Skip to main content

A review of space tether in new applications


Ever since the space tether was first proposed by Tsiolkovsky, it has been extensively utilized in space missions, for attitude stabilization, momentum exchange, and space elevators. Developments in engineering technology and changes in the space environment have diversified the current applications for the space tether. New applications for the space tether include the Tethered Space Robot, Tethered Space Net, and Tethered Spacecraft Formation. These are quickly being adapted for in-orbit maintenance such as fueling service, orbit maneuvering, and active space debris capture/removal. The flexibility and elasticity of the space tether lead to complex issues with tethered space systems, including the mechanics design, dynamics modeling and analysis, and control scheme design. In this paper, we review several new applications for the space tether during service in orbit, and research the on structure, dynamics, and control of each application. This review is conducted to provide an overall summary of the space tether for On-Orbit Servicing, and further the conversation regarding possible research interests in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Tsiolkovsky, K.E.: Speculations Between Earth and Sky, p. 35. Isd-voAN-SSSR, Moscow (1895). (reprinted in 1959)

    Google Scholar 

  2. 2.

    Ellery, A., Kreisel, J., Sommer, B.: The case for robotic on-orbit servicing of spacecraft: spacecraft reliability is a myth. Acta Astronaut. 63(5), 632–48 (2008)

    Google Scholar 

  3. 3.

    Flores-Abad, A., Ma, O., Pham, K., et al.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Google Scholar 

  4. 4.

    Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016)

    Google Scholar 

  5. 5.

    Huang, P., Wang, M., Meng, Z., et al.: Attitude takeover control for post-capture of target spacecraft using space robot. Aerosp. Sci. Technol. 51, 171–80 (2016)

    Google Scholar 

  6. 6.

    Bele\({\mathop {\rm ts}}^{\frown }\)kiĭ, V.V., Levin, E.V.: Dynamics of space tether systems. Univelt Incorporated, San Diego (1993)

  7. 7.

    Pearson, J.: Konstantin Tsiolkovski and the origin of the space elevator. In: 48th IAF, International Astronautical Congress, Turin, Italy, vol. 10, pp. 6–10 (1997)

  8. 8.

    Chobotov, V.: Gravity-gradient excitation of a rotating cable-counterweight space station in orbit. J. Appl. Mech. 30(4), 547–54 (1963)

    Google Scholar 

  9. 9.

    O’dell, C.R., York, D.G., Henize, K.G.: Structure of the barnard loop nebula as determined from Gemini 11 photographs. Astrophys. J. 150, 835 (1967)

    Google Scholar 

  10. 10.

    Lang, D.D., Nolting, R.K.: Operations with Tethered Space Vehicles, vol. 138, p. 55. NASASpecial Publication, Wahington, DC (1967)

    Google Scholar 

  11. 11.

    Colombo, G., Martinez-Sanchez, M., Arnold, D.: The use of tethers for payload orbit transfer. NASA Rep. 82, 26705 (1982)

    Google Scholar 

  12. 12.

    Bekey, I.: Tethers open new space options. Astronaut. Aeronaut. 21(4), 32–40 (1983)

    Google Scholar 

  13. 13.

    Bekey, I., Penzo, P.A.: Tether propulsion. Aerosp. Am. 24(7), 40–3 (1998)

    Google Scholar 

  14. 14.

    Carroll, J.A.: Tether applications in space transportation. Acta Astronaut. 13(4), 165–74 (1986)

    MATH  Google Scholar 

  15. 15.

    Kyroudis, G.A., Conway, B.A.: Advantages of tether release of satellites from elliptic orbits. J. Guid. Control Dyn. 11(5), 441–8 (1988)

    MATH  Google Scholar 

  16. 16.

    Kumar, K., Kumar, R., Misra, A.K.: Effects of deployment rates and librations on tethered payload raising. J. Guid. Control Dyn. 15(5), 1230–5 (1992)

    Google Scholar 

  17. 17.

    Yasaka, T.: Tumble orbit transfer of spent satellites. J. Spacecr. Rocket. 27(3), 348–50 (1990)

    Google Scholar 

  18. 18.

    Bekey, I.: Tethering a new technique for payload deployment. Aerosp. Am. 35(3), 36–40 (1997)

    Google Scholar 

  19. 19.

    Kumar, K.D.: Payload deployment by reusable launch vehicle using tether. J. Spacecr. Rocket. 38(2), 291–4 (2001)

    Google Scholar 

  20. 20.

    Lorenzini, E.C., Cosmo, M.L., Kaiser, M., et al.: Mission analysis of spinning systems for transfers from low orbits to geostationary. J. Spacecr. Rocket. 37(2), 165–72 (2000)

    Google Scholar 

  21. 21.

    Ziegler, S.W., Cartmell, M.P.: Using motorized tethers for payload orbital transfer. J. Spacecr. Rocket. 38(6), 904–13 (2001)

    Google Scholar 

  22. 22.

    Kumar, K.D., Yasaka, T., Sasaki, T.: Orbit transfer of service vehicle/payload through tether retrieval. Acta Astronaut. 54(9), 687–98 (2004)

    Google Scholar 

  23. 23.

    Bonnal, C., Missionnier, S., Malnar, B., et al.: Optimization of tethered de-orbitation of spent upper stages. In: Proceedings of 4th European Conference on Space Debris. ESA-SP-587, pp. 361–366 (2005)

  24. 24.

    Hyslop, A., Van Der Heide, E., Stelzer, M., et al.: Designed a micro-launcher with tethered upper stage. In: Proceedings of 57th International Astronautical Conference. IAC; IAC-06- D2.3.03:1-15 (2006)

  25. 25.

    Chobotov, V.: Gravitational excitation of an extensible dumbbell satellite. J. Spacecr. Rocket. 4(10), 1295–300 (1967)

    Google Scholar 

  26. 26.

    Robe, R.Q.: Salt Flux in and Classification of the Columbia River Estuary During High and Low Discharge. University of Washington, Washington (1968). MS report

    Google Scholar 

  27. 27.

    Misra, A.K., Diamond, G.S.: Dynamics of a subsatellite system supported by two tethers. J. Guid. Control Dyn. 9(1), 12–6 (1986)

    MATH  Google Scholar 

  28. 28.

    Ciardo, S., Bergamaschi, S.: A new method for a tethered system aided space station assembly. In: Proceedings of AGARD, Space Vehicle Flight Mechanics. p(SEE N 90-27741 22-18) (1990)

  29. 29.

    Banerjee, A.K., Kane, T.R.: Pointing control, with tethers as actuators, of a space station supported platform. J. Guid. Control Dyn. 16(2), 396–9 (1993)

    Google Scholar 

  30. 30.

    Kumar, K.: Satellite attitude stabilization through tether. Acta Astronaut. 35(6), 385–90 (1995)

    Google Scholar 

  31. 31.

    Kumar, K., Kumar, K.D.: Open-loop satellite librational control in elliptic orbits through tether. Acta Astronaut. 41(1), 15–21 (1997)

    Google Scholar 

  32. 32.

    Kurnar, K., Kumar, K.D.: Satellite attitude maneuver through tether: a novel concept. Acta Astronaut. 40(2), 247–56 (1997)

    Google Scholar 

  33. 33.

    Kumar, K.D., Yasaka, T.: Satellite attitude stabilization through kite-like tether configuration. J. Spacecr. Rocket. 39(5), 755–760 (2002)

    Google Scholar 

  34. 34.

    Janeski, JA.: Dynamics of an electrodynamic tether system in a varying space-plasma environment. PhD thesis, Virginia Polytechnic Institute and State University (2013)

  35. 35.

    Levin, E.M.: Dynamic Analysis of Space Tether Missions. Univelt Incorporated, San Diego (2007)

    Google Scholar 

  36. 36.

    Aslanov, V.S., Ledkov, A.S.: Dynamics of Tethered Satellite Systems. Elsevier, Amsterdam (2012)

    Google Scholar 

  37. 37.

    Hacker, B.C., Grimwood, J.M.: On the Shoulders of Titans: A History of Project Gemini, p. 4203. NASA Special Publication, Washington (1977). NASA SP-4203

    Google Scholar 

  38. 38.

    Sasaki, S., Oyama, K.I., Kawashima, N., et al.: Tethered rocket experiment (Charge 2): initial results on electrodynamics. Radio Sci. 23(6), 975–988 (1988)

    Google Scholar 

  39. 39.

    Van Pelt, M.: Space Tethers and Space Elevators. Springer Science & Business Media, Berlin (2009)

    Google Scholar 

  40. 40.

    Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook. National Aeronautics and Space Administration, Washington (1997)

    Google Scholar 

  41. 41.

    Jablonski, AM., Vigneron, FR., Tyc, G., et al.: OEDIPUS-C tether dynamics experiment. In: Proceedings of the 9th CASI Conference on Astronautics, Canadian Aeronautics and Space Institute, pp. 18–30 (1996)

  42. 42.

    Lanoix, E.: Tether sling shot assists–a novel approach to travelling in the solar system. In: Proceedings of the 9th CASI Conference on Astronautics-Towards the Next Century in Space, pp. 62–71 (1996)

  43. 43.

    Smith, HF.: The first and second flights of the small expendable deployer system (SEDS). In: Proceedings of the Fourth International Conference on Tethers in Space, pp. 43–55 (1995)

  44. 44.

    Purdy, W., Coffey, S., Barnds, WJ., et al.: TiPS- Results of a tethered satellite experiment. In: Proceedings of the Astrodynamics, pp. 3–23 (1997)

  45. 45.

    Bischof, B., Kerstein, L., Starke, J., et al.: ROGER-robotic geostationary orbit restorer. Sci. Technol. Ser. 109, 183–93 (2004)

    Google Scholar 

  46. 46.

    Kruijff, M., van der Heide, E.J.: Qualification and in-flight demonstration of a European tether deployment system on YES2. Acta Astronaut. 64(9), 882–905 (2009)

    Google Scholar 

  47. 47.

    Williams, P., Hyslop, A., Stelzer, M., et al.: YES2 optimal trajectories in presence of eccentricity and aerodynamic drag. Acta Astronaut. 64(7), 745–69 (2009)

    Google Scholar 

  48. 48.

    Nohmi, M.: Initial experimental result of pico-satellite KUKAI on orbit. In: Proceedings of the International Conference on Mechatronics and Automation. IEEE, pp. 2946–2951 (2009)

  49. 49.

    Nohmi, M., Oi, K., Takuma, S., et al.: Solar paddle antenna mounted on pico-satellite KUKAI for amateur radio communication. In: Proceedings of the Second International Conference on Advances in Satellite and Space Communications. IEEE, pp. 31-36 (2010)

  50. 50.

    Cartmell, M.P., McKenzie, D.J.: A review of space tether research. Prog. Aerosp. Sci. 44(1), 1–21 (2008)

    Google Scholar 

  51. 51.

    Kumar, K.D.: Review on dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rocket. 43(4), 705–20 (2006)

    Google Scholar 

  52. 52.

    Huang, P., Zhang, F., Cai, J., et al.: Dexterous tethered space robot: design, measurement, control and experiment. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1452–1468 (2017)

    Google Scholar 

  53. 53.

    Zhai, G., Zhang, J.: Space tether net system for debris capture and removal. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), IEEE, pp. 257–261 (2012)

  54. 54.

    Kim, E., Vadali, S.R.: Modeling issues related to retrieval of flexible tethered satellite systems. J. Guid. Control Dyn. 1(5), 650–660 (2012)

    Google Scholar 

  55. 55.

    Li, G., Zhu, Z.: Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration. Celest. Mech. Dyn. Astron. 123(4), 1–24 (2015)

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Meng, Z., Huang, P.: Universal dynamic model of the tethered space robot. J. Aerosp. Eng. 29(1), 1–11 (2016)

    Google Scholar 

  57. 57.

    Meng, Z., Huang, P.: An effective approach control scheme for the tethered space robot system. Int. J. Adv. Robot. Syst. 11, 1–14 (2014)

    Google Scholar 

  58. 58.

    Zhang, F., Huang, P., Meng, Z., et al.: Dynamics modeling and model selection of space debris removal via the tethered space robot. Proc. IMechE Part G: J. Aerosp. Eng. 231(10), 1873–1897 (2017)

    Google Scholar 

  59. 59.

    Mantri, P., Mazzoleni, A., Padgett, A.: Parametric study of deployment of tethered satellite systems. J. Spacecr. Rocket. 44(2), 412–424 (2007)

    Google Scholar 

  60. 60.

    Yu, B., Jin, D.: Deployment and retrieval of tethered satellite system under J2 perturbation and heating effect. Acta Astronaut. 67(7–8), 845–53 (2010)

    Google Scholar 

  61. 61.

    Yu, B., Jin, D., Wen, H.: Nonlinear dynamics of flexible tethered satellite system subject to space environment. Appl. Math. Mech. 37(4), 485–500 (2016)

    MathSciNet  Google Scholar 

  62. 62.

    Liu, J., Cui, N., Shen, F., et al.: Dynamics of the space tug system with a short tether. Int. J. Aerosp. Eng. 2015(2), 1–16 (2015)

    Google Scholar 

  63. 63.

    Aleksander, A., Hugh, G., Roberto, A., et al.: Considering the collision probability of active debris removal missions. Acta Astronaut. 131, 10–17 (2017)

    Google Scholar 

  64. 64.

    Aslanov, V., Vadim, Y.: Dynamics of large space debris removal using tethered space tug. Acta Astronaut. 91, 149–156 (2013)

    Google Scholar 

  65. 65.

    Aslanov, V., Alexander, L.: Dynamics of towed large space debris taking into account atmospheric disturbance. Acta Mech. 225(9), 2685–2697 (2014)

    MATH  Google Scholar 

  66. 66.

    Aslanov, V., Vadim, Y.: Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages. Adv. Sp. Res. 55(2), 660–667 (2015)

    Google Scholar 

  67. 67.

    Aslanov, V., Misra, A., Yudintsev, V.: Chaotic attitude motion of a low-thrust tug-debris tethered system in a Keplerian orbit. Acta Astronaut. 139, 419–427 (2013)

    Google Scholar 

  68. 68.

    Aslanov, V., Ledkov, A.: Swing principle in tether-assisted return mission from an elliptical orbit. Aerosp. Sci. Technol. 71, 156–162 (2017)

    Google Scholar 

  69. 69.

    Aslanov, V., Ledkov, A.: Tether-assisted re-entry capsule deorbiting from an elliptical orbit. Acta Astronaut. 130, 180–186 (2017)

    Google Scholar 

  70. 70.

    Soltani, M., Keshmiri, M., Misra, A.: Dynamic analysis and trajectory tracking of a tethered space robot. Acta Astronaut. 128, 335–342 (2016)

    Google Scholar 

  71. 71.

    Huang, P., Cai, J., Meng, Z., et al.: Novel method of monocular real-time feature point tracking for tethered space robots. J. Aerosp. Eng. 27(6), 1–14 (2014)

    Google Scholar 

  72. 72.

    Cai, J., Huang, P., Meng, Z., et al.: A TSR visual servoing system based on a novel dynamic template matching method. Sensors 15(12), 32152–32167 (2015)

    Google Scholar 

  73. 73.

    Cai, J., Huang, P., Meng, Z., et al.: An efficient circle detector not relying on edge detection. Adv. Sp. Res. 57(11), 2359–2375 (2016)

    Google Scholar 

  74. 74.

    Chen, L., Huang, P., Cai, J., et al.: A non-cooperative target grasping position prediction model for tethered space robot. Aerosp. Sci. Technol. 58, 571–581 (2016)

    Google Scholar 

  75. 75.

    Pascal, M., Djebli, A., El-Bakkali, L.: A new deployment/retrieval scheme for a tethered satellite system, intermediate between the conventional scheme and the crawler scheme. J. Appl. Math. Mech. 65(4), 689–696 (2001)

    MathSciNet  MATH  Google Scholar 

  76. 76.

    Djebli, A., El-Bakkali, L., Pascal, M.: On fast retrieval laws for tethered satellite systems. Acta Astronaut. 50(8), 461–470 (2002)

    Google Scholar 

  77. 77.

    Tang, J., Ren, G., Zhu, W., et al.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. 16(8), 3411–3424 (2011)

    MathSciNet  MATH  Google Scholar 

  78. 78.

    He, Y., Liang, B., Xu, W.: Study on the stability of tethered satellite system. Acta Astronaut. 68(11–12), 1964–1972 (2011)

    Google Scholar 

  79. 79.

    Wen, H., Zhu, Z., Jin, D., et al.: Space tether deployment control with explicit tension constraint and saturation function. J. Guid. Control Dyn. 39(4), 916–921 (2016)

    Google Scholar 

  80. 80.

    Wen, H., Zhu, Z., Jin, D., et al.: Exponentially convergent velocity observer for an electro-dynamic tether in an elliptical orbit. J. Guid. Control Dyn. 39(5), 1113–1118 (2016)

    Google Scholar 

  81. 81.

    Wen, H., Zhu, Z., Jin, D., et al.: Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronaut. 119, 110–117 (2016)

    Google Scholar 

  82. 82.

    Williams, P.: Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52(1–2), 159–179 (2008)

    MATH  Google Scholar 

  83. 83.

    Sun, G., Zhu, Z.: Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronaut. 104(1), 304–312 (2014)

    Google Scholar 

  84. 84.

    Sun, G., Zhu, Z.: Fractional-order tension control law for deployment of space tether system. J. Guid. Control Dyn. 37(6), 2057–167 (2014)

    Google Scholar 

  85. 85.

    Sun, G., Zhu, Z.: Fractional-order dynamics and control of rigid-flexible coupling space structures. J. Guid. Control Dyn. 38(7), 1324–9 (2014)

    Google Scholar 

  86. 86.

    Ma, Z., Sun, G.: Adaptive sliding mode control of tethered satellite deployment with input limitation. Acta Astronaut. 127, 67–75 (2016)

    Google Scholar 

  87. 87.

    Huang, P., Zhang, F., Meng, Z., et al.: Adaptive control for space debris removal with uncertain kinematics, dynamics and states. Acta Astronaut. 128, 416–430 (2016)

    Google Scholar 

  88. 88.

    Meng, Z., Wang, B., Huang, P.: Twist suppression method of tethered towing for spinning space debris. J. Aerosp. Eng. 30(4), 04017012-1-9 (2017)

    Google Scholar 

  89. 89.

    Wang, B., Meng, Z., Huang, P.: Attitude control of towed space debris using only tether. Acta Astronaut. 138, 152–167 (2017)

    Google Scholar 

  90. 90.

    Meng, Z., Wang, B., Huang, P.: A space tethered towing method using tension and platform thrusts. Adv. Space Res. 59, 656–669 (2017)

    Google Scholar 

  91. 91.

    Nohmi, M., Nenchev, D., Uchiyama, M.: Momentum control of a tethered space robot through tether tension control. In: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, pp. 920–925 (1998)

  92. 92.

    Nohmi, M., Nenchev, D., Uchiyama, M.: Tethered robot casting using a spacecraft-mounted manipulator. J. Guid. Control Dyn. 24(4), 827–833 (2001)

    Google Scholar 

  93. 93.

    Nohmi, M., Dragomir, N., Uchiyama, M.: Motion control of a tethered space robot during casting. Trans. Jpn. Soc. Mech. Eng. 66(647), 2255–2261 (2000)

    Google Scholar 

  94. 94.

    Wang, D., Huang, P., Meng, Z.: Coordinated stabilization of tumbling targets using tethered space manipulators. IEEE. Trans. Aerosp. Electron. Syst. 51(3), 2420–2432 (2015)

    Google Scholar 

  95. 95.

    Fujii, H.A., Kojima, H.: Optimal trajectory analysis for deployment/retrieval of tethered subsatellite using metric. J. Guid. Control Dyn. 26(1), 177–179 (2003)

    Google Scholar 

  96. 96.

    Kokubun, K., Fujii, H.A.: Deployment/retrieval control of a tethered subsatellite under effect of tether elasticity. J. Guid. Control Dyn. 19(1), 138–146 (2015)

    MATH  Google Scholar 

  97. 97.

    Lakso, J.J., Coverstone, V.L.: Optimal tether deployment/retrieval trajectories using direct collocation. Urbana 51, 61801 (2000)

    Google Scholar 

  98. 98.

    Wen, H., Jin, D., Hu, H.: Three-dimensional optimal deployment of a tethered subsatellite with an elastic tether. Int. J. Comput. Math. 85(6), 915–923 (2008)

    MathSciNet  MATH  Google Scholar 

  99. 99.

    Wen, H., Jin, D., Hu, H.: Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dyn. 51(4), 501–514 (2008)

    MathSciNet  MATH  Google Scholar 

  100. 100.

    Huang, P., Hu, Z., Meng, Z.: Coupling dynamics modeling and optimal coordinated control of tethered space robot. Aerosp. Sci. Technol. 41, 36–46 (2015)

    Google Scholar 

  101. 101.

    Huang, P., Xu, X., Meng, Z., et al.: Optimal trajectory planning and coordinated tracking control method of tethered space robot based on velocity impulse. Int. J. Adv. Robot. Syst. 11(8), 1–17 (2014)

    Google Scholar 

  102. 102.

    Mantellato, R., Valmorbida, A., Lorenzini, C.: Thrust-aided librating deployment of tape tethers. J. Spacecr. Rocket. 52(5), 1–12 (2008)

    Google Scholar 

  103. 103.

    Meng, Z., Wang, B., Huang, P., et al.: In-plane adaptive retrieval control for a non-cooperative target by tethered space robots. Int. J. Adv. Robot. Syst. 52(5), 1–12 (2016)

    Google Scholar 

  104. 104.

    Nakamura, Y., Sasaki, F., Nakasuka, S.: Guidance and control of tethered retriever with collaborative tension-thruster control for future on-orbit service missions. In: Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), pp. 5–8 (2005)

  105. 105.

    Wang, D., Huang, P., Cai, J., et al.: Coordinated control of tethered space robot using mobile tether attachment point in approaching phase. Adv. Sp. Res. 54(6), 1077–1091 (2014)

    Google Scholar 

  106. 106.

    Huang, P., Zhang, F., Xu, X., et al.: Coordinated coupling control of tethered space robot using releasing characteristics of space tether. Adv. Sp. Res. 57(7), 1528–1542 (2016)

    Google Scholar 

  107. 107.

    Huang, P., Wang, D., Meng, Z., et al.: Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE-ASME Trans. Mech. 21(5), 2260–2271 (2016)

    Google Scholar 

  108. 108.

    Zhang, F., Sharf, I., Misra, A.K., et al.: On-line estimation of inertia parameters of space debris for its tether-assisted removal. Acta Astronaut. 107, 150–162 (2015)

    Google Scholar 

  109. 109.

    Lu, Y., Huang, P., Meng, Z., et al.: Finite time attitude takeover control for combination via tethered space robot. Acta Astronaut. 136, 9–21 (2017)

    Google Scholar 

  110. 110.

    Huang, P., Wang, D., Meng, Z., et al.: Post-capture attitude control for a tethered space robot-target combination system. Robotica 33(4), 898–919 (2015)

    Google Scholar 

  111. 111.

    Huang, P., Wang, D., Meng, Z., et al.: Adaptive postcapture backstepping control for tumbling tethered space robot-target combination. J. Guid. Control Dyn. 39(1), 150–156 (2016)

    Google Scholar 

  112. 112.

    Huang, P., Wang, D., Zhang, F., et al.: Postcapture robust nonlinear control for tethered space robot with constraints on actuator and velocity of space tether. Int. J. Robust Nonlinear Control 27(16), 2824–2841 (2017)

    MathSciNet  MATH  Google Scholar 

  113. 113.

    Grossman, J.: Solar sailing: the next space craze? Eng. Sci. 63(4), 18–29 (2000)

    Google Scholar 

  114. 114.

    Tibert, G., Gardsback, M.: Space webs final report. ESA/ACT, Adriana ID: 05, 4109 (2006)

  115. 115.

    Kaya, N., Iwashita, M., Nakasuka, S., et al.: Crawling robots on large web in rocket experiment on Furoshiki deployment. J. Br. Interplanet. Soc. 58(11–12), 403–6 (2005)

    Google Scholar 

  116. 116.

    Tibert, G.: Deployable Tensegrity Structures for Space Applications. Royal Institute of Technology, Stockholm (2002)

    Google Scholar 

  117. 117.

    Nakasuka, S., Kaya, N.: Quick release on experiment results of mesh deployment and phased array antenna by S-310-36. The Forefront of Space Science (2006)

  118. 118.

    Robbins Jr, WM.: Spinning paraboloidal tension networks (1967)

  119. 119.

    Robbins Jr., W.M.: The Feasibility of an Orbiting 1500-Meter Radiotelescope. National Aeronautics and Space Administration, Washington (1967)

    Google Scholar 

  120. 120.

    Schürch, HU., Hedgepath, JM.: Large low-frequency orbiting radio telescope. National Aeronautics and Space Administration, Washington, DC. NASA contractor report, NASA CR-1201, 1 (1968)

  121. 121.

    Sepetoski, W.K., Pearson, C.E., Dingwell, I.W., et al.: Uniform-stress spinning filamentary disk. AIAA J. 3(7), 1313–1316 (1965)

    Google Scholar 

  122. 122.

    Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–34 (1974)

    MathSciNet  Google Scholar 

  123. 123.

    Tibert, G.: Numerical analyses of cable roof structures. KTH (1999)

  124. 124.

    Lai, C., You, Z., Pellegrino, S.: Shape of deployable membrane reflectors. J. Aerosp. Eng. 11(3), 73–80 (1998)

    Google Scholar 

  125. 125.

    Young, W.C., Budynas, R.G.: Roark’s Formulas for Stress and Strain. McGraw-Hill, New York (2002)

    Google Scholar 

  126. 126.

    Pickett, W.L., Pratt, W.D., Larson, M.L., et al.: Testing of centrifugally deployed membrane dynamics in an ambient ground environment. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO (2002)

  127. 127.

    Cook, R.D.: Concepts and Applications of Finite Element Analysis. Wiley, New York (2007)

    Google Scholar 

  128. 128.

    Eversman, W.: Some Equilibrium and free Vibration Problems Associated with Centrifugally Stabilized Disk and Shell Structures. National Aeronautics and Space Administration, Washinton (1968)

    Google Scholar 

  129. 129.

    Guest, S.: The stiffness of prestressed frameworks: a unifying approach. Int. J. Solids Struct. 43(3), 842–54 (2006)

    MathSciNet  MATH  Google Scholar 

  130. 130.

    Mac Neal, R.H.: Meteoroid Damage to Filamentary Structures. National Aeronautics and Space Administration, Washington (1967)

    Google Scholar 

  131. 131.

    Guest, SD., Pellegrino, S.: Inextensional wrapping of flat membranes. In: Proceedings of the First International Seminar on Structural Morphology, vol. 25 (1992)

  132. 132.

    Scheel, H.: Space-saving storage of flexible sheets: U.S. Patent 3,848,821. 1974-11-19

  133. 133.

    McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  134. 134.

    Koshelev, V.A., Melnikov, V.M.: Large Space Structures Formed by Centrifugal Forces. CRC Press, Boca Raton (1998)

    Google Scholar 

  135. 135.

    Denavit, J.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  136. 136.

    Schuerch, H.U.: Deployable Centrifugally Stabilized Structures for Atmospheric Entry from Space. National Aeronautics and Space Administration, Washington (1964)

    Google Scholar 

  137. 137.

    Biesbroek, R.: The e.deorbit study in the concurrent design facility. In: Presentation Handouts, Workshop on Active Space Debris Removal, Darmstadt, Germany, vol. 17 (2012)

  138. 138.

    Benvenuto, R.: Implementation of a net device test bed for space debris active removal feasibility demonstration. M.S. thesis, Politecnico di Milano (2012)

  139. 139.

    Lorenzo, A., Stefanescu, R., Benvenuto, R., Marcon, M., Lavagna, M.: Validation results of satellite mock-up capturing experiment using nets. In: 66th International Astronautical Congress, Jerusalem, Israel, vol. 365 (2015)

  140. 140.

    Benvenuto, R., Carta, R.: Active debris removal system based on tethered-nets: experimental results. In: Proceedings of the 9th PEGASUS-AIAA Student Conference, Milano, Italy, vol. 4, p. 20 (2013)

  141. 141.

    Medina, A., Cercós, L., Stefanescu, R.M., et al.: Validation results of satellite mock-up capturing experiment using nets. Acta Astronaut. 134, 314–332 (2017)

    Google Scholar 

  142. 142.

    Zhai, G., Qiu, Y., Liang, B., et al.: System dynamics and feedforward control for tether-net space robot system. Int. J. Adv. Robot. Syst. 6(2), 137–144 (2009)

    Google Scholar 

  143. 143.

    Zhai, G., Zhang, J., Yao, Z.: Circular orbit target capture using space tether-net system. Math. Probl. Eng. (2013)

  144. 144.

    Zhai, G., Zhang, J.: Space tether net system for debris capture and removal. In: 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, pp. 257–261 (2012)

  145. 145.

    Gao, Q., Zhang, Q., Feng, Z., et al.: Study on launch scheme of space-net capturing system. PLoS ONE 12(9), e0183770 (2017)

    Google Scholar 

  146. 146.

    Sharf, I., Thomsen, B., Botta, E.M., et al.: Experiments and simulation of a net closing mechanism for tether-net capture of space debris. Acta Astronaut. 139, 332–343 (2017)

    Google Scholar 

  147. 147.

    Liu, H., Zhang, Q., Yang, L., et al.: Dynamics of tether-tugging reorbiting with net capture. Sci. China Technol. Sci. 57(12), 2407–2417 (2014)

    Google Scholar 

  148. 148.

    Benvenuto, R., Salvi, S., Lavagna, M.: Dynamics analysis and gnc design of flexible systems for space debris active removal. Acta Astronaut. 110, 247–265 (2015)

    Google Scholar 

  149. 149.

    Botta, E., Sharf, I., Misra, A.K., et al.: On the simulation of tether-nets for space debris capture with Vortex dynamics. Acta Astronaut. 123, 91–102 (2016)

    Google Scholar 

  150. 150.

    Shan, M., Guo, J., Eberhard, G.: Deployment dynamics of tethered-net for space debris removal. Acta Astronaut. 132, 293–302 (2017)

    Google Scholar 

  151. 151.

    Gao, S., Yin, Y., Sun, X.: Dynamic Simulation of Fishing Net Based on Cubic B-Spline Surface. AsiaSim, pp. 141–148. Springer, Berlin (2012)

    Google Scholar 

  152. 152.

    Zhai, G., Qiu, Y., Liang, B., et al.: On-orbit capture with flexible tether-net system. Acta Astronaut. 65(5), 613–23 (2009)

    Google Scholar 

  153. 153.

    Botta, E.M., Sharf, I., Misra, A.K.: Energy and momentum analysis of the deployment dynamics of nets in space. Acta Astronaut. 140, 554–564 (2017)

    Google Scholar 

  154. 154.

    Shan, M., Guo, J., Gill, E., et al.: Validation of space net deployment modeling methods using parabolic flight experiment. J. Guid. Control Dyn. 40(12), 3319–3327 (2017)

    Google Scholar 

  155. 155.

    Benvenuto, R., Lavagna, M., Salvi, S.: Multibody dynamics driving GNC and system design in tethered nets for active debris removal. Adv. Sp. Res. 58, 45–63 (2016)

    Google Scholar 

  156. 156.

    Botta, E., Sharf, I., Misra, A.K.: On the modeling and simulation of tether-nets for space debris capture. In: Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA, AAS 15–260 (2015)

  157. 157.

    Botta, E., Sharf, I., Misra, A.K.: Contact dynamics modeling and simulation of tether nets for space-debris capture. J. Guid. Control Dyn. 40(1), 110–123 (2017)

    Google Scholar 

  158. 158.

    Shan, M., Guo, J., Gill, E.: Contact dynamic models of space debris capturing using a net. Acta Astronaut (2017).

  159. 159.

    Huang, P., Zhang, F., Ma, J., et al.: Dynamics and configuration control of the maneuvering-net space robot system. Adv. Sp. Res. 55(4), 1004–14 (2015)

    Google Scholar 

  160. 160.

    Meng, Z., Huang, P., Guo, J.: Approach modeling and control of an autonomous maneuverable space net. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2651–2661 (2017)

    Google Scholar 

  161. 161.

    Zhang, F., Huang, P.: Releasing dynamics and stability control of maneuverable tethered space net. IEEE-ASME Trans. Mechatron. 22(2), 983–993 (2017)

    Google Scholar 

  162. 162.

    Zhang, F., Huang, P., Meng, Z., et al.: Dynamics analysis and controller design for maneuverable tethered space net robot. J. Guid. Control Dyn. 40(11), 2828–2843 (2017)

    Google Scholar 

  163. 163.

    Huang, P., Hu, Z., Zhang, F.: Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system. Multibody Syst. Dyn. 36(2), 115–141 (2016)

    MathSciNet  Google Scholar 

  164. 164.

    Guo, J., Gill, E.: DelFFi: formation flying of two CubeSats for technology, education and science. Int. J. Sp. Sci. Eng. 1, 113–27 (2013)

    Google Scholar 

  165. 165.

    Huang, P., Liu, B., Zhang, F.: Configuration maintaining control of three-body ring tethered system based on thrust compensation. Acta Astronaut. 123, 37–50 (2016)

    Google Scholar 

  166. 166.

    Fedi, Casas M.: Dynamics and control of tethered satellite formations in low-Earth orbits. PhD thesis, Universitat Politecnica de Catalunya (2015)

  167. 167.

    Williams, T., Moore, K.: Dynamics of tethered satellite formations. Adv. Astronaut. Sci. 112, 1219–35 (2002)

    Google Scholar 

  168. 168.

    Sarychev, V.A.: Positions of relative equilibrium for two bodies connected by a spherical hinge in a circular orbit. Cosmic Res. 5, 314 (1967)

    Google Scholar 

  169. 169.

    Lorenzini, E.C.: A three-mass tethered system for micro-g/variable-g applications. J. Guid. Control Dyn. 10(3), 242–9 (1987)

    Google Scholar 

  170. 170.

    Pizarro-Chong, A., Misra, A.: Dynamics of a multi-tethered satellite formation. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, 16-9 (2004)

  171. 171.

    Kumar, K., Yasaka, T.: Rotation formation flying of three satellites using tethers. J. Spacecr. Rocket. 41(6), 973–85 (2004)

    Google Scholar 

  172. 172.

    Avanzini, G., Fedi, M.: Refined dynamical analysis of multi-tethered satellite formations. Acta Astronaut. 84, 36–48 (2013)

    Google Scholar 

  173. 173.

    Pizarro-Chong, A., Misra, A.: Dynamics of multi-tethered satellite formations containing a parent body. Acta Astronaut. 63(11), 1188–202 (2008)

    Google Scholar 

  174. 174.

    Guerman, A., Smirnov, G., Paglione, P., et al.: Stationary configurations of a tetrahedral tethered satellite formation. J. Guid. Control Dyn. 31(2), 424–428 (2008)

    Google Scholar 

  175. 175.

    Misra, A., Modi, V.: A survey on the dynamics and control of tethered satellite systems. Tethers. Sp. 62, 667–719 (1987)

    Google Scholar 

  176. 176.

    Zhang, S., Huang, Z., Hu, D.: Investigation on source localization performance using rotating tethered satellite formation. In: 8th International Conference on Wireless Communications & Signal Processing. IEEE, pp. 1–5 (2016)

  177. 177.

    Liu, G., Huang, J., Ma, G., et al.: Nonlinear dynamics and station-keeping control of a rotating tethered satellite system in halo orbits. Chin. J. Aeronaut. 26(5), 1227–37 (2013)

    Google Scholar 

  178. 178.

    Cai, Z., Li, X., Zhou, H.: Nonlinear dynamics of a rotating triangular tethered satellite formation near libration points. Aerosp. Sci. Technol. 42, 384–91 (2015)

    Google Scholar 

  179. 179.

    Zhao, J., Cai, Z.: Nonlinear dynamics and simulation of multi-tethered satellite formations in Halo orbits. Acta Astronaut. 63(5), 673–81 (2008)

    Google Scholar 

  180. 180.

    Zhao, J., Cai, Z., Qi, Z.: Dynamics of variable-length tethered formations near libration points. J. Guid. Control Dyn. 33(4), 1172–83 (2010)

    Google Scholar 

  181. 181.

    Chung, S., Kong, E., Miller, D.: Dynamics and control of tethered formation flight spacecraft using the SPHERES testbed. In: Proceedings of the AIAA Guidance, Navigation and Control Conference. San Francisco, AIAA [AIAA 05-6089] (2005)

  182. 182.

    Razzaghi, P., Assadian, N.: Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations. Adv. Sp. Res. 56, 2141–50 (2015)

    Google Scholar 

  183. 183.

    Zhai, G., Su, F., Zhang, J., Liang, B.: Deployment strategies for planar multi-tethered satellite formation. Aerosp. Sci. Technol. 71, 475–84 (2017)

    Google Scholar 

  184. 184.

    Huang, P., Zhao, Y., Zhang, F., et al.: Deployment/retraction of the rotating hub-spoke tethered formation system. Aerosp. Sci. Technol. 69, 495–503 (2017)

    Google Scholar 

  185. 185.

    Quadrelli, M.: Modeling and dynamics analysis of tethered formations for space interferometry. In: Proceedings of the AAS/AIAA Space Light Mechanics Meeting, AAS [AAS 01-231] (2001)

  186. 186.

    Nakaya, K., Matunaga, S.: On attitude maneuver of spinning tethered formation flying based on virtual structure method. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, AIAA [AIAA 05-6088] (2005)

  187. 187.

    Mori, O., Matunaga, S.: Formation and attitude control for rotational tethered satellite clusters. J. Spacecr. Rocket. 44(1), 211–20 (2007)

    Google Scholar 

  188. 188.

    Menon, C., Bombardelli, C.: Self-stabilising attitude control for spinning tethered formations. Acta Astronaut. 60(10), 828–33 (2007)

    Google Scholar 

  189. 189.

    Liang, H., Wang, J., Sun, Z.: Robust decentralized coordinated attitude control of spacecraft formation. Acta Astronaut. 69(5), 280–8 (2011)

    Google Scholar 

  190. 190.

    Cai, Z., Li, X., Wu, Z.: Deployment and retrieval of a rotating triangular tethered satellite formation near libration points. Acta Astronaut. 98, 37–49 (2014)

    Google Scholar 

  191. 191.

    Yarotsky, D., Sidorenko, V., Pritykin, D.: Three-dimensional multi-tethered satellite formation with the elements moving along lissajous curves. Celest. Mech. Dyn. Astron. 125(3), 309–32 (2016)

    MathSciNet  MATH  Google Scholar 

  192. 192.

    Zhang, Z., Yang, H., Jiang, B.: Decentralized fault tolerant control for Tethered Formation spacecraft. In: Youth Academic Annual Conference of IEEE Chinese Association of Automation, pp. 207–212 (2016)

  193. 193.

    Ma, Z., Sun, G.: Adaptive hierarchical sliding mode control with input saturation for attitude regulation of multi-satellite tethered system. J. Astronaut. Sci. 64, 207–30 (2017)

    Google Scholar 

Download references


This research is Supported by the National Science Fund for Distinguished Young Scholars (Grant No: 61725303), and National Natural Science Foundation of China (Grant No: 61773317).

Author information



Corresponding author

Correspondence to Panfeng Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Zhang, F., Chen, L. et al. A review of space tether in new applications. Nonlinear Dyn 94, 1–19 (2018).

Download citation


  • Space tether
  • On-orbit servicing
  • Tethered space robot
  • Tethered space net
  • Tethered space formation