Skip to main content

Advertisement

Log in

Can Hamilton energy feedback suppress the chameleon chaotic flow?

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamical behaviors of nonlinear systems are much dependent on the parameter setting and nonlinear terms, and some controllable parameters can be adjusted to modulate the outputs of dynamical systems. This paper confirms that the dynamical behaviors of the chameleon chaotic flow can be regulated by using the scheme of the Hamilton energy feedback. The Hamilton energy function can be approached by using the Helmholtz’s theorem. The dynamical system is improved by adding one new variable associated with Hamilton energy, and the feedback gain for energy is adjusted to find target orbits. The Lyapunov exponent, which is used to discern the emergence of chaos when positive value is approached, is calculated when energy feedback is applied, and the phase portraits are also plotted to understand the stability of oscillation behaviors. It is found that setting appropriate positive feedback gain for Hamilton energy can suppress the chaos. It could be helpful for further stability control of other complex dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao, T., Estrecho, E., Bliokh, K.Y., et al.: Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526(7574), 554–558 (2015)

    Article  Google Scholar 

  2. Zhou, P., Ke, M.H.: A new 3D autonomous continuous system with two isolated chaotic attractors and its topological horseshoes. Complexity 2017, 4037682 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Shen, Y.Y., Ke, M.H., Zhou, P.: A 3D fractional-order chaotic system with only one stable equilibrium and controlling chaos. Discret. Dyn. Nat. Soc. 2017, 8434765 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Dowell, E.H., Murphy, K.D., Katz, A.L.: Simplified predictive criteria for the onset of chaos. Nonlinear Dyn. 6, 247–263 (1994)

    Article  Google Scholar 

  5. Jensen, C.N., True, H.: On a new route to chaos in railway dynamics. Nonlinear Dyn. 13, 117–129 (1997)

    Article  Google Scholar 

  6. Zhang, X., Min, L.: A generalized chaos synchronization based encryption algorithm for sound signal communication. Circ. Syst. Signal Process 24(5), 535–548 (2005)

    Article  MathSciNet  Google Scholar 

  7. Min, L.Q., Yang, X.P., Chen, G.R., et al.: Some polynomial chaotic maps without equilibria and an application to image encryption with avalanche effects. Int. J. Bifurc. Chaos 25, 1550124 (2015)

    Article  MathSciNet  Google Scholar 

  8. Li, C.Q., Li, S.J., ASIM, M., et al.: On the security defects of an image encryption scheme. Image Vis. Comput. 27, 1371–1381 (2009)

    Article  Google Scholar 

  9. Kocamaz, U.E., Cicek, S., Uyaroglu, Y.: Secure communication with chaos and electronic circuit design using passivity based synchronization. J. Circuits Syst. Comput. 27(4), 1850057 (2018)

    Article  Google Scholar 

  10. Li, X.W., Li, C.Q., Lee, I.K.: Chaotic image encryption using pseudo-random masks and pixel mapping. Signal Process. 125, 48–63 (2016)

    Article  Google Scholar 

  11. Zhang, G., Ma, J., Alsaedi, A., et al.: Dynamical behavior and application in Josephson Junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  Google Scholar 

  12. Njah, A.N., Ojo, K.S., Adebayo, G.A., et al.: Generalized control and synchronization of chaos in RCL-shunted Josephson Junction using backstepping design. Physica C 470(13–14), 558–564 (2010)

    Article  Google Scholar 

  13. Vaidyanathan, S.: A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control. Arch. Control Sci. 26(1), 19–47 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kocamaz, U.E., Uyaroglu, Y., Kizmaz, H.: Control of Rabinovich chaotic system using sliding mode control. Int. J. Adapt. Control 28(12), 1413–1421 (2014)

    Article  MathSciNet  Google Scholar 

  15. Wang, C.N., Chu, R.T., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21, 370–378 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kuznetsov, N.V.: The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 380(25–26), 2142–2149 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ma, J., Wu, F.Q., Ren, G.D., et al.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  18. Corinto, F., Forti, M.: Memristor circuits: flux-charge analysis method. IEEE Trans. Circ. Syst. I 63(11), 1997–2009 (2016)

    Google Scholar 

  19. Wu, H.G., Bao, B.C., Liu, Z., et al.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  21. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ma, J., Wu, F.Q., Wang, C.N.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 32, 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  23. Zhou, L., Wang, C.H., Zhou, L.L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 85, 2653–2663 (2016)

    Article  Google Scholar 

  24. Zhou, P., Huang, K.: A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 19, 2005–2011 (2014)

    Article  Google Scholar 

  25. Akgul, A., Pehlivan, I.: A new three-dimensional chaotic system without equilibrium points, its dynamical analyses and electronic circuit application. Tehnicki Vjesnik Technical Gazette 23(1), 209–214 (2016)

    Google Scholar 

  26. Wang, X., Viet-Thanh, P., Volos, C.: Dynamics, circuit design, and synchronization of a new chaotic system with closed curve equilibrium. Complexity 2017, 7138971 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Wu, X.Y., Ma, J., Yuan, L.H., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  28. Rajagopal, K., Karthikeyan, A., Srinivasan, A.K.: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87, 2281–2304 (2017)

    Article  Google Scholar 

  29. Viet-Thanh, P., Jafari, S., Volos, C., et al.: A chaotic system with rounded square equilibrium and with no-equilibrium. Optik 130, 365–371 (2017)

    Article  Google Scholar 

  30. Belozyorov, V.Y.: A novel search method of chaotic autonomous quadratic dynamical systems without equilibrium points. Nonlinear Dyn. 86, 835–860 (2016)

    Article  MathSciNet  Google Scholar 

  31. Akgul, A., Calgan, H., Koyuncu, İ., et al.: Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn. 84, 481–495 (2016)

    Article  MathSciNet  Google Scholar 

  32. Jafari, S., Viet-Thanh, P., Kapitaniak, T.: Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int. J. Bifurc. Chaos 26, 1650031 (2016)

    Article  MathSciNet  Google Scholar 

  33. Luo, X.W., Wang, C.H., Wan, Z.: Grid multi-wing butterfly chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Anal. Model. Control 19(2), 272–285 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Jafari, M.A., Mliki, E., Akgul, A., et al.: Chameleon: the most hidden chaotic flow. Nonlinear Dyn. 88, 2303–2317 (2017)

    Article  MathSciNet  Google Scholar 

  35. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D 241(18), 1482–1486 (2012)

    Article  MathSciNet  Google Scholar 

  36. Dudkowski, D., Jafari, S., Kapitaniak, T., et al.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  37. Meucci, R., Euzzor, S., Zambrano, S., et al.: Energy constraints in pulsed phase control of chaos. Phys. Lett. A 381, 82–86 (2017)

    Article  Google Scholar 

  38. Pei, W.H., Zhang, C.H., Ma, Y.J.: Feedback Hamilton realization and control of induction motor for electric vehicles. In: 32nd Chinese Control Conference, Xian, China, July 26–28, pp. 718–722 (2013)

  39. Adiguzel, E., Oz, H.: Direct optimal control of nonlinear systems via Hamilton’s law of varying action. J. Dyn. Syst. Meas. Control Trans. ASME 117(3), 262–269 (1995)

    Article  Google Scholar 

  40. Wu, F.Q., Wang, C.N., Jin, W.Y., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  41. Wang, C.N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65, 240501 (2016). (in Chinese)

    Google Scholar 

  42. Kobe, D.H.: Helmholtz’s theorem revisited. Am. J. Phys. 54, 552–554 (1986)

    Article  Google Scholar 

  43. Ma, J., Wu, F.Q., Jin, W.Y., et al.: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27, 053108 (2017)

    Article  MathSciNet  Google Scholar 

  44. Guo, S.L., Ma, J., Alsaedi, A.: Suppression of chaos via control of energy flow. Pramana 90(3), 39 (2018)

    Article  Google Scholar 

  45. Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)

    Article  MathSciNet  Google Scholar 

  46. Kingni, S.T., Pham, V.T., Jafari, S., et al.: A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form. Chaos Solitons Fractals 99, 209–218 (2017)

    Article  MathSciNet  Google Scholar 

  47. Wolf, A., Swift, J.B., Swinney, H.L., et al.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  48. Sarasola, C., Torrealdea, F.H., d’Anjou, A., et al.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)

    Article  Google Scholar 

  49. Varshney, V., Sabarathinam, S., Prasad, A.: Infinite number of hidden attractors in memristor-based autonomous duffing oscillator. Int. J. Bifurc. Chaos 28, 1850013 (2018)

    Article  MathSciNet  Google Scholar 

  50. Dantsev, D.: A novel type of chaotic attractor for quadratic systems without equilibriums. Int. J. Bifurc. Chaos 28, 1850001 (2018)

    Article  MathSciNet  Google Scholar 

  51. Barboza, R.: On Lorenz and Chen systems. Int. J. Bifurc. Chaos 28, 1850018 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Nature Foundation of China under the Grant Nos. 11765011, 11672122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Hayat, T., An, X. et al. Can Hamilton energy feedback suppress the chameleon chaotic flow?. Nonlinear Dyn 94, 669–677 (2018). https://doi.org/10.1007/s11071-018-4384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4384-x

Keywords

Navigation