Skip to main content

Advertisement

Log in

Towards an understanding of the marine fouling effects on VIV of circular cylinders: a probe into the chaotic features

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The current paper addresses the possibility of chaotic dynamics in the VIV response of cylinders covered by marine biofouling. The fouling was simulated by machining uniformly distributed pyramidal protrusions on the surface of the test cylinder. The Reynolds number varied from \(5.8\times 10^{3}\) to \(6.6\times 10^{4}\). The zero-one tests, Hilbert Transforms and Poincaré maps were used to analyse the VIV test results. The chaos analysis showed that in the early initial branch and in the ending part of the synchronisation, the VIV signals for both the smooth and the artificially biofouled cylinders happened to be chaotic. The signals in between showed non-chaotic dynamics. The chaotic extent grew wider with the artificially biofouled cylinder than those with the smooth cylinder and in the lift force signals as compared to the displacement signals. Our estimates for the chaotic regions in the low mass-damping smooth cylinder interestingly agreed well with (i) zones for the “quasi-periodic” regime and (ii) the region marked as “no observed shedding pattern” in the literature. They singled out these regions because of their irregular dynamics but failed to appreciate these as chaotic. Here, we argue that these regions are in fact quite susceptible to chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(A^{*}\) :

Non-dimensional amplitude \((A/D_\mathrm{O})\)

A :

Cross-flow oscillation amplitude

\(C_\mathrm{L}\) :

Lift force coefficient

\(C_{\mathrm{LRMS}}\) :

Root-mean-square of the lift force coefficient

\(D_\mathrm{o}\) :

The outer diameter of the cylinder

f :

Cross-flow oscillation frequency

\(f^{*}\) :

Reduced frequency

\(F_\mathrm{l}\) :

Lift force

\(f_\mathrm{N}\) :

Natural frequency (in-water)

\(f_\mathrm{s}\) :

Vortices’ frequency (Strouhal frequency)

\(\mathbf{H}_\mathrm{d}(t)\) :

Hilbert Transform of the cross-flow displacement

\(\mathbf{H}_\mathrm{F}(t)\) :

Hilbert Transform of the lift force

K :

System stiffness

\(K_\mathrm{c}\) :

The asymptotic growth rate in the zero-one test

\(K_\mathrm{D}\) :

Surface roughness coefficient

\(L_\mathrm{i}\) :

Immersed length of the cylinder

\(m^{*}\) :

Mass ratio

\(M_{c}(n)\) :

Smoothed mean square displacement

\(\hbox {Max}_{n}, \hbox {Max}_{n+1}\) :

Normalised successive maxima

Re:

Reynolds number

St:

Strouhal number

t :

Time

\(U^{*}\) :

Reduced velocity

\(U_{\infty }\) :

Free stream velocity

\(\xi \) :

Damping ratio (in-air)

\(\Phi (t)\) :

The phase shift between the lift force and the cross-flow displacement

\(\Phi _\mathrm{d} (t)\) :

The analytical phase angle of the cross-flow displacement

\(\Phi _\mathrm{F} (t)\) :

The analytical phase angle of the lift force

\(\rho \) :

Water density

References

  1. Assi, G.R.S., Meneghini, J.R., Aranha, J.A.P., Bearman, P.W., Casaprima, E.: Experimental investigation of flow-induced vibration interference between two circular cylinders. J. Fluids Struct. 22(6), 819–827 (2006)

    Article  Google Scholar 

  2. Blackburn, H., Henderson, R.: Lock-in behavior in simulated vortex-induced vibration. Exp. Therm. Fluid Sci. 12(2), 184–189 (1996)

    Article  Google Scholar 

  3. Blevins, R.D.: Flow-induced vibration, p. 1991. Van Nostrand Reinhold Co., New York (1991)

    Google Scholar 

  4. Boccaletti, S.: The synchronized dynamics of complex systems. Monogr. Ser. Nonlinear Sci. Complex. 6, 1–239 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bourdier, S., Chaplin, J.R.: Vortex-induced vibrations of a rigid cylinder on elastic supports with end-stops, part 1: experimental results. J. Fluids Struct. 29, 62–78 (2012)

    Article  Google Scholar 

  6. Cagney, N., Balabani, S.: Mode competition in streamwise-only vortex-induced vibrations. J. Fluids Struct. 41, 156–165 (2013)

    Article  Google Scholar 

  7. Chasparis, F., Modarres-Sadeghi, Y., Hover, F. S., Triantafyllou, M. S., Tognarelli, M., Beynet, P.: Lock-in, transient and chaotic response in riser VIV. In: ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, pp. 479–485 (2009)

  8. Franzini, G.R., Gonçalves, R.T., Meneghini, J.R., Fujarra, A.L.C.: One and two degrees-of-freedom vortex-induced vibration experiments with yawed cylinders. J. Fluids Struct. 42, 401–420 (2013)

    Article  Google Scholar 

  9. Gaurier, B., Cebron, D., Germain, G.: Vortex-induced vibrations using wake oscillator model. Comparison on 2D response with experiments. In: 9th International Conference on Flow-Induced Vibrations (FIV2008), Prague, République Tchèque (2008)

  10. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)

    Article  MathSciNet  Google Scholar 

  11. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    Article  MathSciNet  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol. 42. Springer, Berlin (1983)

    Book  Google Scholar 

  13. Huera-Huarte, F.J., Bearman, P.W.: Wake structures and vortex-induced vibrations of a long flexible cylinder–part 1: dynamic response. J. Fluids Struct. 25(6), 969–990 (2009)

    Article  Google Scholar 

  14. Imaoka, K., Kobayashi, Y., Emaru, T., Hoshino, Y.: Vortex-induced vibration of an elastically-supported cylinder considering random flow effects. SICE J. Control Meas. Syst. Integr. 8(2), 131–138 (2015)

    Article  Google Scholar 

  15. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Karniadakis, G.E., Triantafyllou, G.S.: Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238, 1–30 (1992)

    Article  Google Scholar 

  17. Khalak, A., Williamson, C.H.K.: Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13(7), 813–851 (1999)

    Article  Google Scholar 

  18. Lai, Y.C., Ye, N.: Recent developments in chaotic time series analysis. Int. J. Bifurc. Chaos 13(6), 1383–1422 (2003a)

    Article  MathSciNet  Google Scholar 

  19. Lai, Y.-C., Liu, Z., Ye, N., Yalcinkaya, T.: Nonlinear time series analysis. In: Ye, N. (ed.) The Handbook of Data Mining. Lawrence Erlbaum Associates, Mahwah (2003b)

  20. Leontini, J.S., Thompson, M.C., Hourigan, K.: The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow. J. Fluids Struct. 22(6), 857–864 (2006)

    Article  Google Scholar 

  21. Leontini, J. S., Thompson, M.: Chaotic oscillation during vortex-induced vibration. In: 22nd International Congress of Theoretical and Applied Mechanics, pp. 1–2 (2008)

  22. Liu, J., Huang, W.: A nonlinear vortex induced vibration model of marine risers. J. Ocean Univ. China 12(1), 32–36 (2013)

    Article  MathSciNet  Google Scholar 

  23. Modarres-Sadeghi, Y., Chasparis, F., Triantafyllou, M.S., Tognarelli, M., Beynet, P.: Chaotic response is a generic feature of vortex-induced vibrations of flexible risers. J. Sound Vib. 330(11), 2565–2579 (2011)

    Article  Google Scholar 

  24. Moon, F.C.: Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers. Wiley, Hoboken (2008)

    Google Scholar 

  25. Morse, T.L., Williamson, C.H.K.: Fluid forcing, wake modes, and transitions for a cylinder undergoing controlled oscillations. J. Fluids Struct. 25(4), 697–712 (2009)

    Article  Google Scholar 

  26. Perdikaris, P.G., Kaiktsis, L., Triantafyllou, G.S.: Chaos in a cylinder wake due to forcing at the Strouhal frequency. Phys. Fluids 21(10), 101705–101708 (2009)

    Article  Google Scholar 

  27. Poincaré, H.: Les méthodes Nouvelles de la méchanique céleste. Gauthier-Villars, Paris (1899)

    MATH  Google Scholar 

  28. Skokos, C., Manos, T.: The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection. Springer, Berlin (2014)

    Google Scholar 

  29. Small, M.: Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, vol. 52. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  30. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Chaotic advection in a two-dimensional flow: Lévy flights and anomalous diffusion. Physica D 76(1–3), 70–84 (1994)

    Article  Google Scholar 

  31. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Perseus Books Group, Washington (2014)

    MATH  Google Scholar 

  32. Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  Google Scholar 

  33. Williamson, C.H.K., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2(4), 355–381 (1988)

    Article  Google Scholar 

  34. Wolfram, J.: Results from laboratory experiments on the loading of fouled cylinders. Marine Fouling and Structural Loading, Society for Under-Water Technology, London (1985)

    Google Scholar 

  35. Zeinoddini, M., Bakhtiari, A., Ehteshami, M., Seif, M.S.: Towards an understanding of the marine fouling effects on VIV of circular cylinders: response of cylinders with regular pyramidal roughness. Appl. Ocean Res. 59, 378–394 (2016)

    Article  Google Scholar 

  36. Zeinoddini, M., Bakhtiari, A., Schoefs, F., Zandi, A.P.: Towards an understanding of marine fouling effects on the vortex-induced vibrations of circular cylinders: partial coverage issue. Biofouling 33(3), 268–280 (2017)

    Article  Google Scholar 

  37. Zeinoddini, M., Farhangmehr, A., Seif, M.S., Zandi, A.P.: Cross-flow vortex-induced vibrations of inclined helically straked circular cylinders: an experimental study. J. Fluids Struct. 59, 178–201 (2015)

    Article  Google Scholar 

  38. Zeinoddini, M., Tamimi, V., Bakhtiari, A.: WIV response of tapered circular cylinders in a tandem arrangement: an experimental study. Appl. Ocean Res. 47, 162–173 (2014)

    Article  Google Scholar 

  39. Zeinoddini, M., Tamimi, V., Seif, M.S.: Stream-wise and cross-flow vortex-induced vibrations of single tapered circular cylinders: an experimental study. Appl. Ocean Res. 42, 124–135 (2013)

    Article  Google Scholar 

  40. Zhao, J., Leontini, J.S., Jacono, D.L., Sheridan, J.: Chaotic vortex-induced vibrations. Phys. Fluids (1994-present) 26(12), 121702 (2014)

    Article  Google Scholar 

  41. Zheng, H., Price, R.E., Modarres-Sadeghi, Y., Triantafyllou, M.S.: On fatigue damage of long flexible cylinders due to the higher harmonic force components and chaotic vortex-induced vibrations. Ocean Eng. 88, 318–329 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bakhtiari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinoddini, M., Bakhtiari, A. & Gharebaghi, S.A. Towards an understanding of the marine fouling effects on VIV of circular cylinders: a probe into the chaotic features. Nonlinear Dyn 94, 575–595 (2018). https://doi.org/10.1007/s11071-018-4378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4378-8

Keywords

Navigation