Skip to main content
Log in

Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A study of high-order solitons in three nonlocal nonlinear Schrödinger equations is presented. These include the \(\mathcal {PT}\)-symmetric, reverse-time, and reverse-space-time nonlocal nonlinear Schrödinger equations. General high-order solitons in three different equations are derived from the same Riemann–Hilbert solutions of the AKNS hierarchy, except for the difference in the corresponding symmetry relations on the “perturbed” scattering data. Dynamics of general high-order solitons in these equations is further analyzed. It is shown that the high-order fundamental-soliton is moving on several different trajectories in nearly equal velocities, and they can be nonsingular or repeatedly collapsing, depending on the choices of the parameters. It is also shown that the high-order multi-solitons could have more complicated wave structures and behave very differently from high-order fundamental-solitons. More interestingly, via the combinations of different size of block matrix in the Riemann–Hilbert solutions, high-order hybrid-pattern solitons are found, which describe the nonlinear interaction between several types of solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  2. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons. Plenum, New York (1984)

    MATH  Google Scholar 

  3. Takhtadjan, L., Faddeev, L.: The Hamiltonian Approach to Soliton Theory. Springer, Berlin (1987)

    Google Scholar 

  4. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  5. Yang, J.: Nonlinear Waves in Integrable and Non integrable Systems. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  6. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  7. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  Google Scholar 

  8. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  Google Scholar 

  9. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \({\cal{PT}}\)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  Google Scholar 

  10. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139(1), 7–59 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gerdjikov, V.S., Saxena, A.: Complete integrability of nonlocal nonlinear Schrödinger equation. J. Math. Phys. 58, 013502 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ablowitz, M.J., Luo, X., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary condition. arXiv:1612.02726 [nlin.SI] (2016)

  13. Wen, X.Y., Yan, Z., Yang, Y.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    Article  MathSciNet  Google Scholar 

  14. Huang, X., Ling, L.M.: Soliton solutions for the nonlocal nonlinear Schrödinger equation. Eur. Phys. J. Plus 131, 148 (2016)

    Article  Google Scholar 

  15. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Nonstandard bilinearization of PT-invariant nonlocal Schrödinger equation: bright soliton solutions. Phys. Lett. A 381, 2380 (2017)

    Article  MathSciNet  Google Scholar 

  16. Yang, B., Yang, J.:General rogue waves in the \(\cal{PT}\)-symmetric nonlinear Schrödinger equation”. arXiv:1711.05930 [nlin.SI] (2017)

  17. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. arXiv:1712.01181 [nlin.SI] (2017)

  18. Rybalko, Y., Shepelsky, D.:Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. arXiv:1710.07961 [nlin.SI] (2017)

  19. Yang, J.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. arXiv:1712.01181 [nlin.SI] (2017)

  20. Chen, K., Zhang, D.J.: Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction. Appl. Math. Lett. 75, 82–88 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \({\cal{PT}}\)-symmetric model. Phys. Rev. E 90, 032912 (2014)

    Article  Google Scholar 

  22. Yan, Z.: Integrable \({\cal{PT}}\)-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified two-parameter model. Appl. Math. Lett. 47, 61–68 (2015)

    Article  MathSciNet  Google Scholar 

  23. Khara, A., Saxena, A.: Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations. J. Math. Phys. 56, 032104 (2015)

    Article  MathSciNet  Google Scholar 

  24. Song, C., Xiao, D., Zhu, Z.: Reverse space-time nonlocal Sasa–Satsuma equation and its solutions. J. Phys. Soc. Jpn 86, 054001 (2017)

    Article  Google Scholar 

  25. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. (2017). https://doi.org/10.1111/sapm.12195

    Article  MATH  Google Scholar 

  26. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  MathSciNet  Google Scholar 

  27. Lou, S.Y., Huang, F.: Alice-Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 869 (2017)

    Article  Google Scholar 

  28. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. arXiv:1612.04892 [nlin.SI] (2016)

  29. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    Article  MathSciNet  Google Scholar 

  30. Yang, B., Chen, Y.: Dynamics of Rogue Waves in the Partially \(\cal{PT}\)-symmetric Nonlocal Davey-Stewartson Systems. arXiv:1710.07061 [math-ph] (2017)

  31. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699–708 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ma, L.Y., Shen, S.F., Zhu, Z.N.: Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation. J. Math. Phys. 58, 103501 (2017)

    Article  MathSciNet  Google Scholar 

  33. Gürses, M.: Nonlocal Fordy–Kulish equations on symmetric spaces. Phys. Lett. A 381, 1791–1794 (2017)

    Article  MathSciNet  Google Scholar 

  34. Liu, Y., Mihalache, D., He, J.: Families of rational solutions of the y-nonlocal Davey–Stewartson II equation. Nonlinear Dyn. 90, 2445–2455 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Y., Liu, Y., Tang, X.: A general integrable three-component coupled nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 89(4), 1–10 (2017)

    Article  Google Scholar 

  36. Ma, L.Y., Zhao, H.Q., Gu, H.: Integrability and gauge equivalence of the reverse space–time nonlocal Sasa–Satsuma equation. Nonlinear Dyn. 91, 1909–1920 (2018)

    Article  Google Scholar 

  37. Xu, B.B., Chen, D.Y., Zhang, H., Zhou, R.: Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn. 81, 1263–1274 (2015)

    Article  Google Scholar 

  38. Xu, B.B., Wang, F.F., Chen, D.Y., Zhang, H.: Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load. Energy Convers. Manag. 108, 478–487 (2016)

    Article  Google Scholar 

  39. Xu, B.B., Chen, D.Y., Tolo, S., Patelli, E., Jiang, Y.L.: Model validation and stochastic stability of a hydro-turbine governing system under hydraulic excitations. Int. J. Electr. Power Energy Syst. 95, 156–165 (2018)

    Article  Google Scholar 

  40. Gagnon, L., Stivenart, N.: N-soliton interaction in optical fibers: the multiple-pole case. Opt. Lett. 19, 619–621 (1994)

    Article  Google Scholar 

  41. Tsuru, H., Wadati, M.: The multiple pole solutions of the sine-Gordon equation. J. Phys. Soc. Jpn 53, 2908–2921 (1984)

    Article  MathSciNet  Google Scholar 

  42. Villarroel, J., Ablowitz, M.J.: A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev–Petviashvili I equations. Commun. Math. Phys. 207, 1–42 (1999)

    Article  Google Scholar 

  43. Ablowitz, M.J., Charkravarty, S., Trubatch, A.D., Villarroel, J.: On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev–Petviashvili I equation. Phys. Lett. A 267, 132–146 (2000)

    Article  MathSciNet  Google Scholar 

  44. Zakharov, V.E., Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)]

  45. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249 (1974)

    Article  MathSciNet  Google Scholar 

  46. Zakharov, V. E., Shabat, A.B.: Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem II. Funk. Anal. Prilozh. 13, 13-22 (1979) [Funct. Anal. Appl. 13, 166-174 (1979)]

  47. Shchesnovich, V.S., Yang, J.: General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations. J. Math. Phys. 44, 4604–4639 (2003)

    Article  MathSciNet  Google Scholar 

  48. Bian, B., Guo, B.L., Ling, L.M.: High-order soliton solution of Landau–Lifshitz equation. Stud. Appl. Math. 134, 181–214 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project is supported by the Global Change Research Program of China (No. 2015CB953904), National Natural Science Foundation of China (Nos. 11675054 and 11435005), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (No. ZF1213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Chen, Y. Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations. Nonlinear Dyn 94, 489–502 (2018). https://doi.org/10.1007/s11071-018-4373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4373-0

Keywords

Navigation