Skip to main content
Log in

Dynamic and stability analysis of the vibratory feeder and parts considering interactions in the hop and the hop-sliding regimes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the interactions of a translational vibratory feeder and the parts in the hop and the hop-sliding regimes are studied by means of an improved multi-term incremental harmonic balance method. It is an effective approach analyzing the interactions by introducing an analytical model of the motion of the feeding parts to the solution procedure. A generalized time-varying piece-wise linear dynamic model of the vibratory feeder is established to conduct a comprehensive investigation on the interactions, where the friction and the impact from the parts are included. The results indicate the dynamic response of the vibratory feeder affects the motion of the parts largely and the motion of the parts also affects the dynamic response in turn. The influences of the mass of the parts, the vibration angle, the installation angle, and the friction coefficient on the interactions of the vibratory feeder and the parts are discussed. The interactions are very important and not ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ashrafizadeh, H., Ziaei-Rad, S.: A numerical 2D simulation of part motion in vibratory bowl feeders by discrete element method. J. Sound Vib. 332(13), 3303–3314 (2013)

    Article  Google Scholar 

  2. Mucchi, E., Di Gregorio, R., Dalpiaz, G.: Elastodynamic analysis of vibratory bowl feeders: Modeling and experimental validation. Mech. Mach. Theory. 60, 60–72 (2013)

    Article  Google Scholar 

  3. Suresh, M., Narasimharaj, V., Arul Navalan, G.K., Chandra Bose, V.: Effect of orientations of an irregular part in vibratory part feeders. Int. J. Adv. Manuf. Technol. 94(5), 2689–2702 (2018)

    Article  Google Scholar 

  4. Sadasivam, U.: Development of vibratory part feeder for material handling in manufacturing automation: a survey. J. Automat. Mob. Robot. Intell. Syst. 9(4), 3–10 (2015)

    Google Scholar 

  5. Ramalingam, M., Samuel, G.L.: Investigation on the conveying velocity of a linear vibratory feeder while handling bulk-sized small parts. Int. J. Adv. Manuf. Technol. 44(3–4), 372–382 (2008)

    Google Scholar 

  6. Kobari, Y., Nammoto, T., Kinugawa, J., Kosuge, K.: Vision based compliant motion control for part assembly. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 293–298 (2013)

  7. Han, I., Lee, Y.: Chaotic dynamics of repeated impacts in vibratory bowl feeders. J. Sound Vib. 249(3), 529–541 (2002)

    Article  Google Scholar 

  8. Reinhart, G., Loy, M.: Design of a modular feeder for optimal operating performance. CIRP J. Manuf. Sci. Technol. 3(3), 191–195 (2010)

    Article  Google Scholar 

  9. Lim, G.H.: Vibratory feeder motion study using Turbo C++ language. Adva. Eng. Softw. 18(1), 53–59 (1993)

    Article  Google Scholar 

  10. Lim, G.H.: On the conveying velocity of a vibratory feeder. Comput. Struct. 62(1), 197–203 (1997)

    Article  Google Scholar 

  11. Kong, X., Xing, J., Wen, B.: Analysis of motion of the part on the linear vibratory conveyor. J. Northeast. Univ. 36(6), 827–831 (2015)

    Google Scholar 

  12. Wen, B., Zhang, H., Liu, S., He, Q., Zhao, C.: Theory and techniques of vibrating machinery and their applications. Science Press, Beijing (2010)

    Google Scholar 

  13. Kong, X., Zhang, X., Li, Q., Wen, B.: Dynamical analysis of vibratory feeder and feeding parts considering interactions by an improved increment harmonic balance method. P I Mech. Eng. C.-J. Mech. 229(6), 1029–1040 (2015)

    Article  Google Scholar 

  14. Vilán Vilán, J.A., Segade Robleda, A., García Nieto, P.J., Casqueiro Placer, C.: Approximation to the dynamics of transported parts in a vibratory bowl feeder. Mech. Mach. Theory 44(12), 2217–2235 (2009)

    Article  MATH  Google Scholar 

  15. Han, I., Gilmore, B.J.: Multi-Body Impact motion with friction–analysis, simulation, and experimental validation. J. Mech. Design. 115(3), 412–422 (1993)

    Article  Google Scholar 

  16. Lau, S.L., Zhang, W.S.: Nonlinear Vibrations of piecewise-linear systems by incremental harmonic balance method. J. Appl. Mech. 59(1), 153–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duan, C., Singh, R.: Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque. J. Sound Vib. 285(4–5), 803–834 (2005)

    Article  Google Scholar 

  18. Kim, T.C., Rook, T.E., Singh, R.: Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J. Sound Vib. 281(3–5), 965–993 (2005)

    Article  Google Scholar 

  19. Duan, C., Singh, R.: Dynamic analysis of preload nonlinearity in a mechanical oscillator. J. Sound Vib. 301(3–5), 963–978 (2007)

    Article  Google Scholar 

  20. Sen, O.T., Dreyer, J.T., Singh, R.: Envelope and order domain analyses of a nonlinear torsional system decelerating under multiple order frictional torque. Mech. Syst. Signal Process. 35(1–2), 324–344 (2013)

    Article  Google Scholar 

  21. Teng, J.G., Lou, Y.F.: Post-collapse bifurcation analysis of shells of revolution by the accumulated arc-length method. Int. J. Numer. Meth. Eng. 40(13), 2369–2383 (1997)

    Article  MATH  Google Scholar 

  22. De Souza Neto, E.A., Feng, Y.T.: On the determination of the path direction for arc-length methods in the presence of bifurcations and ‘snap-backs’. Comput. Method. Appl. M. 179(1–2), 81–89 (1999)

    Article  MATH  Google Scholar 

  23. Leung, A.Y.T., Chui, S.K.: Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. J. Sound. Vib. 181(4), 619–633 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Barrios, G.K.P., de Carvalho, R.M., Kwade, A., Tavares, L.M.: Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 248, 84–93 (2013)

    Article  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant No. 51705337, 51375080, 51675350) and China Postdoctoral Science Foundation (Grant No. 2017M611258)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxi Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Chen, C. & Wen, B. Dynamic and stability analysis of the vibratory feeder and parts considering interactions in the hop and the hop-sliding regimes. Nonlinear Dyn 93, 2213–2232 (2018). https://doi.org/10.1007/s11071-018-4320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4320-0

Keywords

Navigation