Skip to main content

Advertisement

Log in

Crack synchronization of chaotic circuits under field coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear electric devices are important and essential for setting circuits so that chaotic outputs or periodical series can be generated. Chaotic circuits can be mapped into dimensionless dynamical systems by using scale transformation, and thus, synchronization control can be further investigated in numerical way. In case of synchronization approach, resistor is often used to bridge two chaotic circuits and gap junction connection is used to realize possible synchronization. In fact, complex electromagnetic effect in circuits should be considered when the capacitor and inductor (inductance coil) are attacked by high-frequency signals or noise-like disturbance. In this paper, two chaotic circuits are connected by using voltage coupling (via resistor) and triggering mutual induction electromotive force, which time-varying magnetic field is generated in the inductance coils. Therefore, magnetic field coupling is realized between two isolate inductance coils and induction electromotive force is generated to adjust the oscillation in circuits. It is found that field coupling can modulate the synchronization behaviors of chaotic circuits. In case of periodical oscillating state, the synchronization between two periodical circuits under voltage coupling is destroyed when field coupling is considered. Furthermore, the synchronization between chaotic circuits becomes more difficult when field coupling is triggered. Open problems for this topic are proposed for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen, P., Yu, S.M., Zhang, X.Y., et al.: ARM-embedded implementation of a video chaotic secure communication via WAN remote transmission with desirable security and frame rate. Nonlinear Dyn. 86, 725–740 (2016)

    Article  Google Scholar 

  2. Gong, S.Q., Xing, C.W., Chen, S., et al.: Secure communications for dual-polarized MIMO systems. IEEE Trans. Signal Process. 65, 4177–4192 (2017)

    Article  MathSciNet  Google Scholar 

  3. Wu, X.J., Wang, H., Lu, H.T.: Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Anal. Real 13, 1441–1450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tlelo-Cuautle, E., de la Fraga, L.G., Viet-Thanh, P., et al.: Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points. Nonlinear Dyn. 89, 1129–1139 (2017)

    Article  Google Scholar 

  5. Hassan, M.F.: Synchronization of uncertain constrained hyperchaotic systems and chaos-based secure communications via a novel decomposed nonlinear stochastic estimator. Nonlinear Dyn. 83, 2183–2211 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie, E.Y., Li, C.Q., Yu, S.M., et al.: On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. 132, 150–154 (2017)

    Article  Google Scholar 

  7. Li, X.W., Li, C.Q., Lee, I.K.: Chaotic image encryption using pseudo-random masks and pixel mapping. Signal Process. 125, 48–63 (2016)

    Article  Google Scholar 

  8. Ye, G.D., Zhao, H.Q., Chai, H.J., et al.: Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dyn. 83, 2067–2077 (2016)

    Article  MathSciNet  Google Scholar 

  9. Abderrahim, N.W., Benmansour, F.Z., Seddiki, O.: A chaotic stream cipher based on symbolic dynamic description and synchronization. Nonlinear Dyn. 78, 197–207 (2014)

    Article  Google Scholar 

  10. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos 24, 033105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, X.P., Min, L.Q., Wang, X.: A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption. Chaos 25, 053104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Volos, C., Akgul, A., Viet-Thanh, P., et al.: A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. 89, 1047–1061 (2017)

    Article  Google Scholar 

  13. Koyuncu, I., Ozcerit, A.T.: The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng. 58, 203–214 (2017)

    Article  Google Scholar 

  14. Acosta, A.J., Addabbo, T., Tena-Sanchez, E.: Embedded electronic circuits for cryptography, hardware security and true random number generation: an overview. Int. J. Circuit Theory Appl. 45, 145–169 (2017)

    Article  Google Scholar 

  15. Murillo-Escobar, M.A., Cruz-Hernandez, C., Cardoza-Avendano, L., et al.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87, 407–425 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, C.Q., Liu, Y.S., Xie, T., et al.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73, 2083–2089 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    Article  MATH  Google Scholar 

  18. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  19. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10(2), 161–173 (1987)

    Article  Google Scholar 

  21. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3), 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley, New York (1989)

    MATH  Google Scholar 

  23. He, Z.M., La, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. Real 12, 403–417 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, J., Wang, Q.Y., Jin, W.Y., et al.: Control chaos in Hindmarsh–Rose neuron by using intermittent feedback with one variable. Chin. Phys. Lett. 25, 3582–3585 (2008)

    Article  Google Scholar 

  25. Wang, C.N., Chu, R.T., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21, 370–378 (2015)

    Article  MathSciNet  Google Scholar 

  26. Ma, J., Wu, F.Q., Jin, W.Y., et al.: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27, 053108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajagopal, K., Vaidyanathan, S., Karthikeyan, A., et al.: Dynamic analysis and chaos suppression in a fractional order brushless DC motor. Electr. Eng. 99, 721–723 (2017)

    Article  Google Scholar 

  28. Messadi, M., Mellit, A.: Control of chaos in an induction motor system with LMI predictive control and experimental circuit validation. Chaos Solitons Fractals 97, 51–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karthikeyan, A., Rajagopal, K.: Chaos control in fractional order smart grid with adaptive sliding mode control and genetically optimized PID control and its FPGA implementation. Complexity 2017, 3815146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tacha, O.I., Volos, C.K., Kyprianidis, I.M., et al.: Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Appl. Math. Comput. 276, 200–217 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Wang, C.N., He, Y.J., Ma, J., et al.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20, 64–73 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wang, Z.L., Wang, C., Shi, X.R., et al.: Realizing hybrid synchronization of time-delay hyperchaotic 4D systems via partial variables. Appl. Math. Comput. 245, 427–437 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Lee, S., Park, M., Baek, J.: Robust adaptive synchronization of a class of chaotic systems via fuzzy bilinear observer using projection operator. Inf. Sci. 402, 182–198 (2017)

    Article  Google Scholar 

  34. Liu, K.X., Wu, L.L., Lu, J.H., et al.: Finite-time adaptive consensus of a class of multi-agent systems. Sci. China Technol. Sci. 59, 22–32 (2016)

    Article  Google Scholar 

  35. Zhang, H.W., Lewis, F.L.: Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatic 48, 1432–1439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, J., Wu, X.Y., Chu, R.T., et al.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  37. Alombah, N.H., Fotsin, H., Romanic, K.: Coexistence of multiple attractors. Metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. Bifurc. Chaos 27, 1750067 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Escalante-Gonzalez, R.J., Campos-Canton, E., Nicol, M.: Generation of multi-scroll attractors without equilibria via piecewise linear systems. Chaos 27, 053109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Viet-Thanh, P., Volos, C., Jafari, S., et al.: A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos 26, 1650139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dudkowski, D., Jafari, S., Kapitaniak, T., et al.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, L., Wang, C.N., Zhou, L.L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 85, 2653–2663 (2016)

    Article  Google Scholar 

  42. Zhang, C.X.: Theoretical design and circuit realization of complex grid multi-wing chaotic system. Optik 127, 4584–4589 (2016)

    Article  Google Scholar 

  43. Grassi, G., Severance, F.L., Miller, D.A.: Multi-wing hyperchaotic attractors from coupled Lorenz systems. Chaos Solitons Fractals 41, 284–291 (2009)

    Article  MATH  Google Scholar 

  44. Ma, J., Wu, F.Q., Ren, G.D., et al.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  45. Ren, G.D., Wu, G., Ma, J., et al.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64, 058702 (2015). In Chinese

    Google Scholar 

  46. Wu, X.Y., Ma, J., Yuan, L.H., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  47. Korkmaz, N., Ozturk, I., Kilic, R.: The investigation of chemical coupling in a HR neuron model with reconfigurable implementations. Nonlinear Dyn. 86, 1841–1854 (2016)

    Article  Google Scholar 

  48. Ren, G.D., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurc. Chaos 27, 1750287 (2017)

    MathSciNet  Google Scholar 

  49. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)

    Article  MathSciNet  Google Scholar 

  50. Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)

    Article  Google Scholar 

  51. Wang, C.N., Lv, M., Alsaedi, A., et al.: Synchronization stability and pattern selection in a memristive neuronal network. Chaos 27, 113108 (2017)

    Article  MathSciNet  Google Scholar 

  52. Wu, F.Q., Wang, C.N., Jin, W.Y., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  53. Ma, J., Mi, L., Zhou, P., et al.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  Google Scholar 

  54. Ma, J., Wu, F.Q., Wang, C.N.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31, 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  55. Wang, Y., Ma, J., Xu, Y., et al.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I(58), 1323–1336 (2011)

    Article  MathSciNet  Google Scholar 

  57. Zhang, G., Ma, J., Alsaedi, A., et al.: Dynamical behavior and application in Josephson Junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  Google Scholar 

  58. Xu, Y., Jia, Y., Ma, J., et al.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435–442 (2017)

    Article  Google Scholar 

  59. Tamasevicius, A., Namajunas, A., Cenys, A.: Simple 4D chaotic oscillator. Electr. Lett. 32, 957–958 (1996)

    Article  Google Scholar 

  60. Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758–763 (2000)

    Article  Google Scholar 

  61. Ren, G.D., Xu, Y., Wang, C.N., et al.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)

    Article  Google Scholar 

  62. Guo, S.L., Xu, Y., Wang, C.N., et al.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105, 120–127 (2017)

    Article  MathSciNet  Google Scholar 

  63. Wu, J., Xu, Y., Ma, J.: Levy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS One 12, e0174330 (2017)

    Article  Google Scholar 

  64. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  65. Xu, Y., Ying, H.P., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  66. Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  67. Ma, J., Wu, F.Q., Hayat, T., et al.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Physica A 486, 508–516 (2017)

    Article  MathSciNet  Google Scholar 

  68. Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  69. Wolf, A., Swift, J.B., Swinney, H.L., et al.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China under Grants. 11672122, 11765011. The authors would like to thank Ms. Lulu Lu for her help in producing Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wu, F., Alsaedi, A. et al. Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn 93, 2057–2069 (2018). https://doi.org/10.1007/s11071-018-4307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4307-x

Keywords

Navigation