Nonlinear Dynamics

, Volume 93, Issue 4, pp 1933–1951 | Cite as

A new secure and robust watermarking technique based on logistic map and modification of DC coefficient

  • Shabir A. ParahEmail author
  • Nazir A. Loan
  • Asif A. Shah
  • Javaid A. Sheikh
  • G. M. Bhat
Original Paper


The proliferation of information and communication technology has made exchange of information easier than ever. Security and copyright protection of multimedia contents in such a scenario has become a major challenge for the research community round the globe. Digital watermarking has been found as an effective tool for protection and security of multimedia content. A secure and robust watermarking scheme based on DC coefficient modification in pixel domain and a modified logistic map is presented in this paper. The cover image is divided into \(8 \times 8\) sub-blocks and instead of computing DC coefficient using discrete cosine transform (DCT), we compute DC coefficient of each block in spatial domain. Watermark bits are embedded by modifying DC coefficients of various blocks in spatial domain. The quantum of change to be brought in various pixels of a block for embedding watermark bit depends upon DC coefficient of respective blocks, nature of watermark bit (0 or 1) to be embedded and the adjustment factor. The security of embedded watermark has been taken care of by using chaotic encryption based on a generalized logistic map (GLM). We show that GLM has better properties like ergodicity, larger lyapunov exponent, uniform invariant density, mixing, higher range of bifurcation parameter etc., compared to basic logistic map. We exploit these properties of GLM for designing a secure robust, strong efficient cryptosystem to encrypt the watermark information before embedding it. Experimental investigations show that besides being highly secure the proposed technique is robust to both signal processing and geometric attacks. Further, the proposed scheme is computationally efficient as DC coefficient which holds the information is computed in pixel domain instead of using DCT on an image block.


Watermarking Security Chaotic encryption Generalized logistic map Robustness, computational complexity 



The authors acknowledge the support rendered by University Grants Commission (UGC) Government of India under its SAP programme for conduct of this work.


  1. 1.
    Li, C., Lin, D., Lu, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. (2017). arXiv:1711.01858
  2. 2.
    Djurovic, I., Stankovic, S., Pitas, I.: Digital watermarking in the fractional Fourier transformation domain. J. Netw. Comput. Appl. 24, 167–173 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Parah, S.A., Sheikh, J.A., Hafiz, A.M., Bhat, G.M.: A secure and robust information hiding technique for covert communication. Int. J. Electron. 102, 1253–1266 (2014)CrossRefGoogle Scholar
  4. 4.
    Shabir, A.P., Javaid, A.S., Bhat, G.M.: Data hiding in scrambled images: a new double layer security data hiding technique. Comput. Electr. Eng. 40, 70–82 (2014)CrossRefGoogle Scholar
  5. 5.
    Parah, S.A., Javaid, A.S, Farhana, A., Bhat, G.M.: On the realization of robust watermarking system for medical images. In: 12th IEEE India International Conference (INDICON) on Electronics, Energy, Environment, Communication, Computers, Control (E3-C3), pp. 1–6. Jamia Millia Islamia, New Delhi (2015)Google Scholar
  6. 6.
    Shabir, A.P., Javaid, A.S., Bhat, G.M.: On the realization of a secure, high capacity data embedding technique using joint top-down and down- top embedding approach. Elixir Comp. Sci. Eng. 49, 10141–10146 (2012)Google Scholar
  7. 7.
    Shabir, A.P., Javaid, A.S., Bhat, G.M.: High capacity data embedding using joint intermediate significant bit and least significant technique. Int. J. Inf. Eng. Appl. 2, 1–11 (2013)Google Scholar
  8. 8.
    Cintra, J., Dimitrov, S., Oliveira, M., Campello, M.: Fragile watermarking using finite field trigonometrical transforms. Signal Process. Image Commun. 24(7), 587–597 (2009)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Zhao, J.: A new video watermarking algorithm based on 1D DFT and Radon transform. Signal Process. 90(2), 626–639 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ghouti, L., Bouridane, A., Ibrahim, M., Boussakta, S.: Digital image watermarking using balanced multi-wavelets. IEEE Trans. Signal Process. 54(4), 1519–1536 (2106)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lu, W., Sun, W., Lu, H.: Novel robust image watermarking based on subsampling and DWT. Multimed. Tools Appl. 60(1), 31–46 (2012)CrossRefGoogle Scholar
  12. 12.
    Lai, C., Tsai, C.: Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans. Instrum. Meas. 59(11), 3060–3063 (2010)CrossRefGoogle Scholar
  13. 13.
    Chen, R., Luo, Y., Lan, Y., Alsharif, M.: A new robust digital image watermarking algorithm based on singular value decomposition and independent component analysis. J. Con. Inf. Tech. 8(5), 530–537 (2013)Google Scholar
  14. 14.
    Parah, S.A., Sheikh, J.A., Bhat, G.M.: Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing. Digit. Signal Process. 53, 11–24 (2016)CrossRefGoogle Scholar
  15. 15.
    Fazlali, H.R., Samavi, S., Karimi, N., Shirani, S.: Adaptive blind image watermarking using edge pixel concentration. Multimed. Tools Appl. 76, 3105 (2016). CrossRefGoogle Scholar
  16. 16.
    Bhatnagar, G., Wu, Q.M.: A new robust and efficient multiple watermarking scheme. Multimed. Tools Appl. 74, 8421–8444 (2015)CrossRefGoogle Scholar
  17. 17.
    Kalra, G.S., Talwar, R., Sadawarti, H.: Adaptive digital image watermarking for color images in frequency domain. Multimed. Tools Appl. 74, 6849–6869 (2015)CrossRefGoogle Scholar
  18. 18.
    Lang, J., Zhang, Z.: Blind digital watermarking method in the fractional Fourier transform domain. Opt. Lasers Eng. 53, 112–121 (2014)CrossRefGoogle Scholar
  19. 19.
    Guo, J., Zheng, P., Huang, J.: Secure watermarking scheme against watermark attacks in the encrypted domain. J. Vis. Commun. Image Represent. 30, 125–135 (2015)CrossRefGoogle Scholar
  20. 20.
    Ma, F., Zhang, J., Zhang, W.: A blind watermarking technology based on DCT do-main, In: Proceedings of the IEEE International Conference on Computer Science and Service System, CSSS, 2012, pp. 398–401 (2012)Google Scholar
  21. 21.
    Lin, S., Shie, S., Guo, J.Y.: Improving the robustness of DCT-based image watermarking gainst JPEG compression. Comput. Stand. Interfaces 32, 54–60 (2010)CrossRefGoogle Scholar
  22. 22.
    Das, C., Panigrahi, S., Sharma, V.K., Mahapatra, K.K.: A novel blind robust image watermarking in DCT domain using inter-block coefficient correlation. Int. J. Electron. Commun. 68, 244–253 (2014)CrossRefGoogle Scholar
  23. 23.
    Niansheng, L., Huajian, L., Huaiyu, D., Donghui, G., Deming, C.: Robust blind image watermarking based on chaotic mixtures. Nonlinear Dyn. 80, 1329–1355 (2015)CrossRefGoogle Scholar
  24. 24.
    Sajjad, S., Jamal, T.S., Iqtadar, H.: An efcient scheme for digital watermarking using chaotic map. Nonlinear Dyn. 73, 1469–1474 (2013)CrossRefGoogle Scholar
  25. 25.
    Seyyed, M.R., Farschi, H.: A novel chaotic approach for information hiding in image. Nonlinear Dyn. 69, 1525–1539 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Amir, A., Adil, M.S., Jameel, A., Iqtadar, H.: A technique for digital steganography using chaotic maps. Nonlinear Dyn. 75, 807–816 (2014)CrossRefGoogle Scholar
  27. 27.
    Laiying, L., Dong, N., Siping, C., Tianfu, W., Feng, Z.: Optimal image watermarking scheme based on chaotic map and quaternion wavelet transform. Nonlinear Dyn. 78, 2897–2907 (2014)CrossRefGoogle Scholar
  28. 28.
    Chen, P., Yu, S., Zhang, He, J., Lin, Z., Le, C., Lu, J.: ARM-embedded implementation of a video chaotic secure communication via WAN remote transmission with desirable security and frame rate. Nonlinear Dyn. 86, 725–740 (2016)CrossRefGoogle Scholar
  29. 29.
    Zhao, J., Wang, S., Chang, Y., Li, X.: A novel image encryption scheme based on an improper fractionalorder chaotic system. Nonlinear Dyn. 80, 1721–1729 (2015)CrossRefGoogle Scholar
  30. 30.
    Elbadri, M., Peterkin, R., Groza, V., Ionescu, D., Saddik, A.E.: Hardware support of JPEG. In: Proceedings of Canadian Conference on Electrical and Computer Engineering pp. 812–815 (2005)Google Scholar
  31. 31.
    Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, 18–24 (1992)CrossRefGoogle Scholar
  32. 32.
    Shih, F.Y., Wu, S.Y.: Combinational image watermarking in the spatial and frequency domains. Pattern Recogn. 36(4), 969–975 (2003)CrossRefGoogle Scholar
  33. 33.
    Su, Q., Ni, Y., Wang, Q., Sheng, G.: A blind color image watermarking based on DC component in the spatial domain. Optik 124, 255–6260 (2013)CrossRefGoogle Scholar
  34. 34.
    Pareek, N., Patidar, V., Sud, K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)CrossRefGoogle Scholar
  35. 35.
    Chen, G., Mao, M., Chui, C.: A symmetric image encryption based on 3D chaotic map. Chaos Solut. Fractals 21, 749–761 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shabir, A.P., Javaid, A.S., Bhat, G.M.: Hiding in encrypted images: a three tier security data hiding system. Multidimens. Syst. Signal Process. 28(2), 549–572 (2017)CrossRefzbMATHGoogle Scholar
  37. 37.
    Parah, S.A., Sheikh, J.A., Hafiz, A.M., Bhat, G.M.: A secure and robust information hiding technique for covert communication. Int. J. Electron. 102, 1253–1266 (2014)CrossRefGoogle Scholar
  38. 38.
    Parah, S.A., Javaid, A.S., Nazir, L., Farhana, A., Bhat, G.M.: Information hiding in medical images: a robust medical image watermarking system for E-Healthcare. Multimed. Tools Appl. 76(8), 10599–10633 (2017)CrossRefGoogle Scholar
  39. 39.
    Nidhi, S.: A new image encryption method using chirikov and logistic map. Int. J. Comput. Appl. 59, 2123–2129 (2013)Google Scholar
  40. 40.
    Patra, J.C., Phua, J.E., Bornand, C.: A novel DCT domain CRT-based watermarking scheme for image authentication surviving JPEG compression. Digit. Signal Proc. 20(6), 1597–1611 (2010)CrossRefGoogle Scholar
  41. 41.
    Chengqing, L., Tao, X., Qi, L., Ge, C.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78, 1545–1551 (2014)CrossRefGoogle Scholar
  42. 42.
    Eric, Y.X., Chengqing, L., Simin, Y., Jinhu, L.: On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Sig. Process. 132, 150–154 (2017)CrossRefGoogle Scholar
  43. 43.
    Chengqing, L., Dongdong, L.: Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed. 24(3), 64–71 (2017)CrossRefGoogle Scholar
  44. 44.
    Chengqing, L., Shujun, L., Muhammad, A., Juana, N., Gonzalo, A., Guanrong, Chen: On the security defects of an image encryption scheme. Image Vis. Comput. 27, 1371–1381 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shabir A. Parah
    • 1
    Email author
  • Nazir A. Loan
    • 1
  • Asif A. Shah
    • 1
  • Javaid A. Sheikh
    • 1
  • G. M. Bhat
    • 2
  1. 1.Post Graduate Department of Electronics and Instrumentation TechnologyUniversity of KashmirSrinagarIndia
  2. 2.Institute of Engineering and TechnologyZakuraIndia

Personalised recommendations