Skip to main content
Log in

On the dynamics of a vibration isolator with geometrically nonlinear inerter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The inerter is a two-terminal mechanical element that produces forces directly proportional to the relative acceleration between these terminals. The linear behaviour of this element has already been described in the literature. In this work, the nonlinear effects of the geometrical arrangement of the inerter are investigated in terms of vibration isolation and compared to the traditional arrangement. The analysis comprises the use of harmonic-balanced method applied to the exact equation, as well as approximations for low amplitude and high amplitude. Numerical analysis is used to complement the investigation. Comparison with classic vibration isolators shows possible benefits for high frequency regimes. The effects from the geometrical nonlinearity vanish when the amplitude of motion is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137(3), 031,012 (2015)

    Article  Google Scholar 

  2. Avramov, K., Gendelman, O.: Interaction of elastic system with snap-through vibration absorber. Int. J. Non Linear Mech. 44(1), 81–89 (2009)

    Article  MATH  Google Scholar 

  3. Bird, W.: Antivibration suspension device, p. 1,506,557. US Patent (1924)

  4. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3), 678–689 (2007)

    Article  Google Scholar 

  5. Evangelou, S., Limebeer, D.J., Sharp, R.S., Smith, M.C.: Steering compensation for high-performance motorcycles. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 1, pp. 749–754. IEEE (2004)

  6. Flannelly, W.G.: Dynamic anti-resonant vibration isolator, p. 3,445,080. US Patent (1969)

  7. Frahm, H.: Device for damping vibrations of bodies, p. 989,958. US Patent (1911)

  8. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., Ulerich, R.: Gnu scientific library reference manual. ISBN: 0954612078. Library available online at http://www.gnu.org/software/gsl (2015)

  9. Gonzalez-Buelga, A., Lazar, I.F., Jiang, J.Z., Neild, S.A., Inman, D.J.: Assessing the effect of nonlinearities on the performance of a tuned inerter damper. Struct. Control Health Monit. 24(3), e1879–n/a (2017). E1879 STC-15-0213.R1

  10. Goodwin, A.: Vibration isolators, p. 3,322,379 A. US Patent (1967)

  11. Hamdan, M., Dado, M.: Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J. Sound Vib. 206(2), 151–168 (1997)

    Article  Google Scholar 

  12. Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness sd oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87(2), 987–1014 (2017)

    Article  Google Scholar 

  13. Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008)

    Article  MathSciNet  Google Scholar 

  14. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/

  15. Liu, C., Jing, X.: Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn. 84(4), 2079–2098 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y., Chen, M.Z., Tian, Y.: Nonlinearities in landing gear model incorporating inerter. In: 2015 IEEE International Conference on Information and Automation, pp. 696–701. IEEE (2015)

  17. Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A.: Building a framework for predictive science. arXiv preprint arXiv:1202.1056 (2012)

  19. Nordin, M., Galic’, J., Gutman, P.O.: New models for backlash and gear play. Int. J. Adapt. Control Signal Process. 11(1), 49–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papageorgiou, C., Houghton, N.E., Smith, M.C.: Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas. Control 131(1), 011,001 (2009)

    Article  Google Scholar 

  21. Papageorgiou, C., Smith, M.C.: Laboratory experimental testing of inerters. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 3351–3356. IEEE (2005)

  22. Roberson, R.: Synthesis of a nonlinear dynamic vibration absorber. J. Frankl. Inst. 254, 205–220 (1952)

    Article  MathSciNet  Google Scholar 

  23. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134(1), 011,016 (2012)

    Article  Google Scholar 

  24. Shaw, A., Neild, S., Wagg, D., Weaver, P., Carrella, A.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332(24), 6265–6275 (2013)

    Article  Google Scholar 

  25. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smith, M.C., Walker, G.W.: A mechanical network approach to performance capabilities of passive suspensions. In: Proceedings of the Workshop Modelling and Control of Mechanical Systems, pp. 103–117. Imperial College Press (1997)

  27. Smith, M.C., Wang, F.C.: Controller parameterization for disturbance response decoupling: application to vehicle active suspension control. IEEE Trans. Control Syst. Technol. 10(3), 393–407 (2002)

    Article  Google Scholar 

  28. Starosvetsky, Y., Gendelman, O.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009)

    Article  Google Scholar 

  29. Sun, J., Huang, X., Liu, X., Xiao, F., Hua, H.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013)

    Article  Google Scholar 

  30. Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)

    Article  Google Scholar 

  31. Ushijima, T., Takano, K., Kojima, H.: High performance hydraulic mount for improving vehicle noise and vibration. Technical report, SAE Technical Paper (1988)

  32. Vakakis, A.: Inducing passive nonlinear energy sinks in linear vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  33. Wang, F.C., Liao, M.K., Liao, B.H., Su, W.J., Chan, H.A.: The performance improvements of train suspension systems with mechanical networks employing inerters. Veh. Syst. Dyn. 47(7), 805–830 (2009)

    Article  Google Scholar 

  34. Wang, F.C., Su, W.J.: Inerter nonlinearities and the impact on suspension control. In: 2008 American Control Conference, pp. 3245–3250 (2008)

  35. Xin, D., Yuance, L., Michael, Z.C.: Application of inerter to aircraft landing gear suspension. In: Control Conference (CCC), 2015 34th Chinese, pp. 2066–2071. IEEE (2015)

  36. Yilmaz, C., Kikuchi, N.: Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications. J. Sound Vib. 291(3), 1004–1028 (2006)

    Article  Google Scholar 

  37. Yu, Y., Naganathan, N.G., Dukkipati, R.V.: A literature review of automotive vehicle engine mounting systems. Mech. Mach. Theory 36(1), 123–142 (2001)

    Article  MATH  Google Scholar 

  38. Zhang, Z., Chen, M.Z., Huang, L.: Frequency response of a suspension system with inerter and play. In: BEIJING. The 21th international congress of sound and vibration (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Paupitz Gonçalves.

Appendices

Polynomial terms

The polynomial terms defining Eqs. 24 and 25:

$$\begin{aligned} P_1= & {} -\frac{5}{8}\left( \left( \mu + 1\right) \varOmega ^2 - 1\right) H^5 \nonumber \\&- \,\frac{1}{2} \left( \left( 1 \mu +3\right) \varOmega ^2-3\right) H^3\nonumber \\&+ \,\left( 1- \varOmega ^2 \right) H \end{aligned}$$
(38)
$$\begin{aligned} P_2= & {} -\frac{1}{4}\left( \xi \varOmega H^5 + 4 \xi \varOmega H^3 + 8 \xi \varOmega H \right) \end{aligned}$$
(39)
$$\begin{aligned} P_3= & {} -\frac{1}{4}\left( \varOmega ^2 H^4 + 2\varOmega ^2 H^2 \right) \hat{X}_0 \end{aligned}$$
(40)

Polynomial terms: stability

The polynomial terms defining the stability Eqs. 33 and 34:

$$\begin{aligned} T8= & {} \frac{125}{64}\left( \mu ^2 + 2\mu + 1\right) \varOmega ^4 \nonumber \\&+ \,\frac{1}{32}\left( 10\xi ^2 -125\mu - 125\right) \varOmega ^2 + \frac{125}{64} \end{aligned}$$
(41)
$$\begin{aligned} T_6= & {} \frac{1}{2}\left( 5\mu ^ 2 + 20 \mu + 15\right) \varOmega ^4 \nonumber \\&+\, \left( 2\xi ^2 - 10 \mu - 15\right) \varOmega ^2 + \frac{15}{2} \end{aligned}$$
(42)
$$\begin{aligned} T_4= & {} \frac{1}{4}\left( 3\mu ^2 + 33\mu + 43\right) \varOmega ^4 \nonumber \\&+\, \frac{1}{4} \left( 24\xi ^2 -33\mu - 84 \right) \varOmega ^2 + 1 \end{aligned}$$
(43)
$$\begin{aligned} T_2= & {} \left( 2\mu + 6\right) \varOmega ^4 + \left( 8\xi ^2 -2\mu - 12\right) \varOmega ^2 + 6 \end{aligned}$$
(44)
$$\begin{aligned} T_0= & {} \varOmega ^4 + \left( 4\xi ^2 -2\right) \varOmega ^2 + 1 \end{aligned}$$
(45)
$$\begin{aligned} W_4= & {} \frac{1}{64} \left( 125\mu ^2+250\mu +125\right) U^8\nonumber \\&+ \,\left( \frac{5}{2}\mu ^2+10\mu +\frac{15}{2}\right) U^{6} \nonumber \\&+\,\frac{1}{64}\left( 48\mu ^2+528\mu +672\right) U^4 \nonumber \\&+\, \left( 2\mu +6\right) U^2 + 1 \end{aligned}$$
(46)
$$\begin{aligned} W_2= & {} \frac{1}{32} \left( 10{\xi }^2-125\mu -125\right) U^8 \nonumber \\&+\,\left( 2{\xi }^2-10\mu -15\right) U^6 \nonumber \\&+\,\frac{1}{4}\left( 24{\xi }^2-33\mu -84\right) U^4 \nonumber \\&+ \,\left( 8 \xi ^2-2\mu -12\right) U^2 + 4 \xi ^2 - 1 \end{aligned}$$
(47)
$$\begin{aligned} W_0= & {} \frac{125}{64} U^8 + \frac{15}{2}U^{6} + \frac{21}{2} U^4 + 6 U^2+1 \end{aligned}$$
(48)
Fig. 23
figure 23

Comparison of the absolute transmissibility considering the exact equation, the mass–spring–damper, the mass–spring–damper–inerter isolators and a system with an auxiliary TMD. \(X_0=0.3\), \(\mu =0.3\), \(\xi =0.01\)

Absolute transmissibility of linear systems

The absolute transmissibility of a linear spring–mass–damper system is given by

$$\begin{aligned} T = \frac{1+j2\xi \varOmega }{1-\varOmega ^2 + j2\xi \varOmega } \end{aligned}$$
(49)

The absolute transmissibility of a linear spring–mass–damper–inerter system of Fig. 2 is given by

$$\begin{aligned} T = \frac{1 -\mu \varOmega ^2 + j2\xi \varOmega }{1-(1+\mu )\varOmega ^2 + j2\xi \varOmega } \end{aligned}$$
(50)

Comparison with tuned mass damper (TMD)

To complement the analysis described in this paper, a comparison of the proposed system with the tuned mass damper is shown in Fig. 23. In this analysis, the natural frequency of the auxiliary system was tuned in the same resonance frequency of the primary system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, F.d.H., Silveira, M. & Gonçalves, P.J.P. On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dyn 93, 1325–1340 (2018). https://doi.org/10.1007/s11071-018-4262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4262-6

Keywords

Navigation