Skip to main content
Log in

Robust adaptive dynamic surface control for hypersonic vehicles

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An adaptive dynamic surface control (DSC) scheme is proposed for the multi-input multi-output attitude control of near-space hypersonic vehicles (NHV). The proposed control strategy can improve the control performance of NHV despite uncertainties and external disturbances. The proposed controller combines dynamic surface control and radial basis function neural network (RBFNN) and is designed to control the longitudinal dynamics of NHV. The DSC technique is used to handle the problem of “explosion of complexity” inherent to the conventional backstepping method. RBFNN is used to approximate the unknown nonlinear function, and a robustness component is introduced in the controller to cancel the influence of compound disturbance and improve robustness and adaptation of the system. Simulation results show that the proposed strategy possesses good robustness and fast response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

\(\alpha \) :

The angle of attack (rad)

\(\beta \) :

The side slip angle and the roll angle (rad)

\(\gamma \) :

The flight path angle (rad)

\({C_\mathrm{D}}\) :

Drag coefficient

\({C_\mathrm{L}}\) :

Lift coefficient

\({C_\mathrm{T}}\) :

Thrust coefficient

D :

Drag (lbf)

H :

The altitude (ft)

\({I_{yy}}\) :

Moment of inertia (slug \(\mathrm{ft^2}\))

L :

Lift (lbf)

\({M_{yy}}\) :

Pitching moment (lbf ft)

M :

Mass (slug)

\(\mu \) :

The angle of bank (rad)

q :

The pitch rate (rad/s)

\(\bar{r}\) :

Radial distance from Earth’s center (ft)

T :

Thrust (lbf)

V :

The velocity (ft/s)

r :

The yaw rate (rad/s)

p :

The roll rate (rad/s)

References

  1. Yan, X., Chen, M., Wu, Q., Shao, S.: Adaptive neural tracking control for near-space vehicle with stochastic disturbances. Int. J. Adv. Robot. Syst. 14(3), 1–10 (2017)

    Article  Google Scholar 

  2. Alsuwian, T.: Comparison of PID and nonlinear feedback linearization controls for longitudinal dynamics of hypersonic vehicle at subsonic speeds. In: Proceedings of the IEEE National Aero-space Electronics Conference, NAECON, 207-213, February 14 (2017)

  3. Sagliano, M., Mooij, E., Theil, S.: Adaptive disturbance-based high-order sliding-mode control for hypersonic-entry vehicles. J. Guid. Control Dyn. 40(3), 521–536 (2017)

    Article  Google Scholar 

  4. Wiese, D.P., Annaswamy, A.M., Muse, J.A., Bolender, M.A., Lavretsky, E.: Adaptive output feedback based on closed-loop reference models for hypersonic vehicles. J. Guid. Control Dyn. 38(12), 2429–2440 (2015)

    Article  Google Scholar 

  5. Lamorte, N., Friedmann, P.P., Dalle, D.J., Torrez, S.M., Driscoll, J.F.: Uncertainty propagation in integrated air-frameC propulsion system analysis for hypersonic vehicles source. J. Propulsi. Power 31(1), 54–68 (2015)

    Article  Google Scholar 

  6. Sziroczak, D., Smith, H.: A review of design issues specific to hypersonic flight vehicles source. Prog. Aerosp. Sci. 84, 1–28 (2016)

    Article  Google Scholar 

  7. Starkey, R.P.: Hypersonic vehicle telemetry blackout analysis source. J. Spacecr. Rockets 52(2), 426–438 (2015)

    Article  Google Scholar 

  8. Keith C.: DARPA HTV-2 Second Test Flight Report Released. http://spaceref.com/aeronautics/darpa-htv-2-second-testflight-report-released.html. cited 22 April 2012

  9. Qi, C., Jianliang, A.: NDI-based L1 adaptive control design for a generic hypersonic vehicle model. In: AIAA Guidance, Navigation, and Control Conference, Texas, pp. 1–17 (2017)

  10. Mobayen, S., Baleanu, D., Tchier, F.: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. J. Vib. Control. 23(18), 2912–2925 (2017)

    Article  MathSciNet  Google Scholar 

  11. He, N.B., Gutierrez, H., Gao, Q., Jiang, C.S.: Fuzzy terminal slide-mode control for hypersonic vehicle. J. Intell. Fuzzy Syst. 33, 1831–1839 (2017)

    Article  MATH  Google Scholar 

  12. Xu, H.J., Mirmirani, M.D., Ioannou, P.A.: Adaptive sliding mode control design for a hyper-sonic flight vehicle. J. Guid. Control Dyn. 27, 829–838 (2004)

    Article  Google Scholar 

  13. Chen, M., Jing, Y.: Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin. J. Aeronaut. 28(3), 853–864 (2015)

    Article  Google Scholar 

  14. Chen, M., Jiang, C.-S., Wu, Q.-X.: Disturbance-observer-based robust flightcontrol for hypersonic vehicles using neural networks. Adv. Sci. Lett. 4, 1771–1775 (2011)

    Article  Google Scholar 

  15. Jiang, B., Zhang, K., Shi, P.: Integrated fault estimation and accommodation design for discrete-time Takagi–Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 19(2), 291–304 (2011)

    Article  Google Scholar 

  16. Fu, J., Wu, Q.X., Jiang, C.S., Cheng, L.: Robust sliding mode control with unidirectional auxiliary surfaces for a nonlinear with state constraints. Control Decis. 26(9), 1288–1294 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Pu, M., Wu, Q.-X., Jiang, C.-S., Cheng, L.: Application of adaptive second-order dynamic terminal sliding mode control to near space vehicle. J. Aerosp. Power 25(5), 1169–1176 (2010)

    Google Scholar 

  18. Du, Y.L., Wu, Q.X., Jiang, C.S., Wen, J.: Adaptive functional link network control of near-space vehicles with dynamical uncertainties. J. Syst. Eng. Electron. 21(5), 868–876 (2010)

    Article  Google Scholar 

  19. Wang, Y.H., Wu, Q.X., Jiang, C.S.: Reentry attitude tracking control based on fuzzy feed-forward for reusable launch vehicle. Int. J. Control Autom. Syst. 7(4), 503–511 (2009)

    Article  Google Scholar 

  20. Gao, G., Wang, J.Z.: Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties. J. Frank. Inst 350(5), 1155–1188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mobayen, S., Baleanu, D.: Stability analysis and controller controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dyn. 83(3), 1557–1665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mobayen, S., Tchier, F.: Design of an adaptive chattering avoidance global sliding mode tracker for uncertain non-linear time-varying systems. Trans. Inst. Meas. Control. 39(10), 1547–1558 (2017)

    Article  Google Scholar 

  23. Mobayen, S., Tchier, F., Ragoub, L.: Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. Int. J. Syst. Sci. 48(9), 1990–2002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, P., Dongke, W., Meng, Z., Zhang, F.: Adaptive postcapture backstepping control for tumbling tethered space robotCtarget combination. J. Guid. Control Dyn. 39(1), 150C156 (2016)

    Article  Google Scholar 

  25. Xia, G.: Adaptive neural network control with backstepping for surface ships with input dead-zone. Math. Probl. Eng. 2013, 1–9 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Sun, L.-Y., Tong, S., Liu, Y.: Adaptive backstepping sliding mode control of static var compensator. IEEE Trans. Control Syst. Technol. 19(5), 1178–1185 (2011)

    Article  Google Scholar 

  27. Jiang, C., Wu, Q., Fei, S.: Modern Nonlinear Robust Control System M. Harbin Institute of Technology Press, Harbin (2012)

    Google Scholar 

  28. Khalil, H.K.: Nonlinear Control M. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  29. Cheng, C.-C., Chiang, Y.-C., Huang, P.-C.: Design of adaptive block back-stepping controllers with perturbations estimation for nonlinear state-delayed systems in semi-strict feedback form. Asian J. Control 19(3), 856–873 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  31. Yu, Z.X., Lin, Y.: A robust adaptive dynamic surface control for nonlinear systems with hysteresis Input. Acta Autom. Sin. 36(9), 1264–1271 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor-in-Chief, the Associate Editor, and anonymous reviewers for their constructive comments based on which the presentation of this paper has been greatly improved. This work is partially supported by The Natural Science Foundation of Jiangsu Province (Granted No. BK20150246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naibao He.

Appendix

Appendix

The detailed expressions of the vectors \({{{W}}_1}\) and matrices \({{{\varPi }}_2}\), \(\varOmega _2\) are:

$$\begin{aligned} {{W}}_1^T&= \frac{1}{M} \left[ \begin{array}{c} {T_V}\cos \alpha - {D_V}\\ - Mg\cos \gamma \\ - T\sin \alpha - {D_\alpha }\\ {T_\lambda }\cos \alpha \\ {T_h}\cos \alpha - {D_h} - M{g_h}\sin \gamma \end{array} \right] \end{aligned}$$
(A-1)
$$\begin{aligned} {{\varOmega }_2}&= \left[ {\begin{array}{ccccc} {{w}}_{21}&{{w}}_{22}&{{w}}_{23}&{{w}}_{24}&{{w}}_{25} \end{array}}\right] \end{aligned}$$
(A-2)

where

$$\begin{aligned} {{{w}}_{21}}&= \left[ \begin{array}{c} {T_{VV}}\cos \alpha - {D_{VV}}\\ 0\\ - {T_V}\sin \alpha - {D_{V\alpha }}\\ {T_{V\lambda }}\cos \alpha \\ - {D_{Vh}} \end{array} \right] \end{aligned}$$
(A-3)
$$\begin{aligned} {{{w}}_{22}}&= {\left[ {0\begin{array}{*{20}{c}} {} \end{array}Mg\sin \gamma \begin{array}{*{20}{c}} {} \end{array}0\begin{array}{*{20}{c}} {} \end{array}0\begin{array}{*{20}{c}} {} \end{array} - {g_h}\cos \gamma } \right] ^T} \end{aligned}$$
(A-4)
$$\begin{aligned} {{{w}}_{23}}&= \left[ {\begin{array}{*{20}{c}} { - {T_V}\sin \alpha - {D_{\alpha V}}}\\ 0\\ { - T\cos \alpha - {D_{\alpha \alpha }}}\\ { - {T_\lambda }\sin \alpha }\\ { - {T_h}\sin \alpha - {D_{\alpha h}}} \end{array}} \right] \end{aligned}$$
(A-5)
$$\begin{aligned} {{{w}}_{24}}&= {\left[ {{T_{\lambda V}}\cos \alpha \begin{array}{*{20}{c}} {} \end{array}0\begin{array}{*{20}{c}} {} \end{array} - {T_\lambda }\sin \alpha \begin{array}{*{20}{c}} {} \end{array}{T_{\lambda \lambda }}\cos \alpha \begin{array}{*{20}{c}} {} \end{array}0} \right] ^T} \end{aligned}$$
(A-6)
$$\begin{aligned} {{{w}}_{25}}&= \left[ {\begin{array}{*{20}{c}} {{T_{hV}}\cos \alpha - {D_{hV}}}\\ { - M{g_h}\cos \gamma }\\ { - {T_h}\sin \alpha - {D_{h\alpha }}}\\ {{T_{h\lambda }}\cos \alpha }\\ {{T_{hh}}\cos \alpha - {D_{hh}} - M{g_{hh}}\sin \gamma } \end{array}} \right] \end{aligned}$$
(A-7)
$$\begin{aligned} {{{{\pi }}_1}}&= {\left[ {{\pi _{11}}\begin{array}{*{20}{c}} {} \end{array}{\pi _{12}}\begin{array}{*{20}{c}} {} \end{array}{\pi _{13}}\begin{array}{*{20}{c}} {} \end{array}{\pi _{14}}\begin{array}{*{20}{c}} {} \end{array}{\pi _{15}}} \right] ^T} \end{aligned}$$
(A-8)

where

$$\begin{aligned} {\pi _{11}}&= \frac{{\left( {{L_V} + {T_V}\sin \alpha } \right) V - \left( {L + T\sin \alpha } \right) }}{{M{V^2}}} + \frac{{g\cos \gamma }}{{{V^2}}} \end{aligned}$$
(A-9)
$$\begin{aligned} {\pi _{12}}&= \frac{{g\sin \gamma }}{V} \end{aligned}$$
(A-10)
$$\begin{aligned} {\pi _{13}}&= \frac{{{L_\alpha } + T\cos \alpha }}{{MV}} \end{aligned}$$
(A-11)
$$\begin{aligned} {\pi _{14}}&= \frac{{{T_\lambda }\sin \alpha }}{{MV}} \end{aligned}$$
(A-12)
$$\begin{aligned} {\pi _{15}}&= \frac{{{L_h} + {T_h}\sin \alpha }}{{MV}} - \frac{{{g_h}\cos \gamma }}{V} \end{aligned}$$
(A-13)
$$\begin{aligned} {{{\varPi }}_2}&= \left[ {{{\pi }_{21}}\begin{array}{*{20}{c}} {} \end{array}{{\pi }_{22}}\begin{array}{*{20}{c}} {} \end{array}{{\pi }_{23}}\begin{array}{*{20}{c}} {} \end{array}{{\pi }_{24}}\begin{array}{*{20}{c}} {} \end{array}{{\pi }_{25}}} \right] \end{aligned}$$
(A-14)

where

$$\begin{aligned}&{{\pi }_{21}} \nonumber \\&= \left[ \begin{array}{c} \frac{{\left( {{L_{VV}} + {T_{VV}}\sin \alpha } \right) }}{{MV}} - \frac{{2\left( {{L_V} + {T_V}\sin \alpha } \right) }}{{M{V^2}}} + \frac{{2\left( {L + T\sin \alpha } \right) }}{{M{V^3}}} - \frac{{2g\cos \gamma }}{{{V^3}}}\\ - \frac{{g\sin \gamma }}{{{V^2}}}\\ \frac{{{L_{V\alpha }} + {T_V}\cos \alpha }}{{MV}} - \frac{{{L_\alpha } + T\cos \alpha }}{{M{V^2}}}\\ \frac{{{T_{V\lambda }}\sin \alpha }}{{MV}} - \frac{{{T_\lambda }\sin \alpha }}{{M{V^2}}}\\ \frac{{{L_{Vh}} + {T_{Vh}}\sin \alpha }}{{MV}} - \frac{{{L_h} + {T_h}\sin \alpha }}{{M{V^2}}} + \frac{{{g_h}\cos \gamma }}{{{V^2}}} \end{array} \right] \end{aligned}$$
(A-15)
$$\begin{aligned}&{{\pi }_{22}} = {\left[ { - \frac{{g\sin \gamma }}{{{V^2}}}\begin{array}{*{20}{c}} {} \end{array}\frac{{g\cos \gamma }}{V}\begin{array}{*{20}{c}} {} \end{array}0\begin{array}{*{20}{c}} {} \end{array}0\begin{array}{*{20}{c}} {} \end{array}\frac{{{g_h}\sin \gamma }}{V}} \right] ^T} \end{aligned}$$
(A-16)
$$\begin{aligned}&{{\pi }_{23}} = \left[ \begin{array}{c} \frac{{{L_{\alpha V}} + {T_V}\cos \alpha }}{{MV}} - \frac{{{L_\alpha } + T\cos \alpha }}{{M{V^2}}}\\ 0\\ \frac{{{L_{\alpha \alpha }} - T\sin \alpha }}{{MV}}\\ \frac{{{T_\lambda }\cos \alpha }}{{MV}}\\ \frac{{{L_{\alpha h}} + {T_h}\cos \alpha }}{{MV}} \end{array} \right] \end{aligned}$$
(A-17)
$$\begin{aligned}&{{\pi }_{24}} = \left[ \begin{array}{c} \frac{{{T_{\lambda V}}\sin \alpha }}{{MV}} - \frac{{{T_\lambda }\sin \alpha }}{{M{V^2}}}\\ 0\\ \frac{{{T_\lambda }\cos \alpha }}{{MV}}\\ \frac{{{T_{\lambda \lambda }}\sin \alpha }}{{MV}}\\ \frac{{{T_{\lambda h}}\sin \alpha }}{{MV}} \end{array} \right] \end{aligned}$$
(A-18)
$$\begin{aligned}&{{\pi }_{25}}= \left[ \begin{array}{c} \frac{{{L_{hV}} + {T_{hV}}\sin \alpha }}{{MV}} - \frac{{{L_h} + {T_h}\sin \alpha }}{{M{V^2}}} + \frac{{{g_h}\cos \gamma }}{{{V^2}}}\\ \frac{{{g_h}\sin \gamma }}{V}\\ \frac{{{L_{h\alpha }} + {T_{h\alpha }}\sin \alpha + T\cos \alpha }}{{MV}}\\ \frac{{{T_{h\lambda }}\sin \alpha }}{{MV}}\\ \frac{{{L_{hh}} + {T_{hh}}\sin \alpha }}{{MV}} - \frac{{{g_{hh}}\cos \gamma }}{V} \end{array} \right] \end{aligned}$$
(A-19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, N., Gao, Q., Gutierrez, H. et al. Robust adaptive dynamic surface control for hypersonic vehicles. Nonlinear Dyn 93, 1109–1120 (2018). https://doi.org/10.1007/s11071-018-4248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4248-4

Keywords

Navigation