Isolated resonances and nonlinear damping
- 37 Downloads
Abstract
We analyze isolated resonance curves (IRCs) in single-degree-of-freedom systems possessing nonlinear damping. Through the combination of singularity theory and the averaging method, the onset and merging of IRCs, which coincide to isola and simple bifurcation singularities, respectively, can be analytically predicted. Numerical simulations confirm the accuracy of the analytical developments. Another important finding of this paper is that we unveil a geometrical connection between the topology of the damping force and IRCs. Specifically, we demonstrate that extremas and zeros of the damping force correspond to the appearance and merging of IRCs. Considering a damping force possessing several minima and maxima confirms the general validity of the analytical result. It also evidences a very complex scenario for which different IRCs are created, co-exist and then merge together to form a super IRC which eventually merges with the main resonance peak.
Keywords
Isolated resonance curves Isola Singularity theory Nonlinear dampingReferences
- 1.Abramson, H.N.: Response curves for a system with softening restoring force. J. Appl. Mech. 22(3), 434–435 (1955)MathSciNetGoogle Scholar
- 2.Bouc, R.: Influence du cycle d’hystérésis sur la résonance non linéaire d’un circuit série. Colloq. Inter. du CNRS 148, 483–489 (1964)Google Scholar
- 3.Hayashi, C.: The influence of hysteresis on nonlinear resonance. J. Frankl. Inst. 281(5), 379–386 (1966)CrossRefGoogle Scholar
- 4.Hagedorn, P.: Parametric resonance in certain nonlinear systems, In: Periodic Orbits, Stability and Resonances, pp. 482–492. Springer (1970)Google Scholar
- 5.Iwan, W.D.: Steady-state dynamic response of a limited slip system. J. Appl. Mech. 35(2), 322–326 (1968)CrossRefGoogle Scholar
- 6.Furuike, D.M.: Dynamic response of hysteretic systems with application to a system containing limited slip. California Inst. Technology (1971)Google Scholar
- 7.Iwan, W.D., Furuike, D.M.: The transient and steady-state response of a hereditary system. Int. J. Non-Linear Mech. 8(4), 395–406 (1973)CrossRefMATHGoogle Scholar
- 8.Koenigsberg, W., Dunn, J.: Jump resonant frequency islands in nonlinear feedback control systems. IEEE Trans. Autom. Control 20(2), 208–217 (1975)CrossRefGoogle Scholar
- 9.Hirai, K., Sawai, N.: Jump phenomena and frequency islands in nonlinear feedback systems (in Japanese), In: Working Group for Nonlinear Probl., Inst. Electron. Commun., pp. 39–48 (1977)Google Scholar
- 10.Hirai, K., Sawai, N.: A general criterion for jump resonance of nonlinear control systems. IEEE Trans. Autom. Control 23(5), 896–901 (1978)CrossRefGoogle Scholar
- 11.Fukuma, A., Matsubara, M.: Jump resonance in nonlinear feedback systems-part I: approximate analysis by the describing-function method. IEEE Trans. Autom. Control 23(5), 891–896 (1978)CrossRefGoogle Scholar
- 12.Capecchi, D., Vestroni, F.: Periodic response of a class of hysteretic oscillators. Int. J. Non-Linear Mech. 25(2–3), 309–317 (1990)CrossRefMATHGoogle Scholar
- 13.Doole, S., Hogan, S.: A piece wise linear suspension bridge model: nonlinear dynamics and orbit continuation. Dyn. Stab. Syst. 11(1), 19–47 (1996)CrossRefMATHGoogle Scholar
- 14.Duan, C., Rook, T.E., Singh, R.: Sub-harmonic resonance in a nearly pre-loaded mechanical oscillator. Nonlinear Dyn. 50(3), 639–650 (2007)CrossRefMATHGoogle Scholar
- 15.Duan, C., Singh, R.: Isolated sub-harmonic resonance branch in the frequency response of an oscillator with slight asymmetry in the clearance. J. Sound Vib. 314(1), 12–18 (2008)CrossRefGoogle Scholar
- 16.Elmegård, M., Krauskopf, B., Osinga, H., Starke, J., Thomsen, J.J.: Bifurcation analysis of a smoothed model of a forced impacting beam and comparison with an experiment. Nonlinear Dyn. 77(3), 951–966 (2014)CrossRefGoogle Scholar
- 17.Bureau, E., Schilder, F., Elmegård, M., Santos, I.F., Thomsen, J.J., Starke, J.: Experimental bifurcation analysis of an impact oscillator-determining stability. J. Sound Vib. 333(21), 5464–5474 (2014)CrossRefGoogle Scholar
- 18.Lee, S., Howell, S., Raman, A., Reifenberger, R.: Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy 97(1), 185–198 (2003)CrossRefGoogle Scholar
- 19.Misra, S., Dankowicz, H., Paul, M.R.: Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy. Phys. D: Nonlinear Phenom. 239(1), 33–43 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 20.Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (1995)CrossRefMATHGoogle Scholar
- 21.Perret-Liaudet, J., Rigaud, E.: Superharmonic resonance of order 2 for an impacting hertzian contact oscillator: theory and experiments. J. Comput. Nonlinear Dyn. 2(2), 190–196 (2007)CrossRefGoogle Scholar
- 22.Rega, G.: Nonlinear vibrations of suspended cables-part II: deterministic phenomena. Appl. Mech. Rev. 57(6), 479–514 (2004)CrossRefGoogle Scholar
- 23.Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19(03), 923–945 (2009)MathSciNetCrossRefGoogle Scholar
- 24.DiBerardino, L.A., Dankowicz, H.: Accounting for nonlinearities in open-loop protocols for symmetry fault compensation. J. Comput. Nonlinear Dyn. 9(2), 021002 (2014)CrossRefGoogle Scholar
- 25.Arroyo, S.I., Zanette, D.H.: Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators. Eur. Phys. J. B 89(1), 1–8 (2016)MathSciNetCrossRefGoogle Scholar
- 26.Mangussi, F., Zanette, D.H.: Internal resonance in a vibrating beam: a zoo of nonlinear resonance peaks. PLoS ONE 11(9), e0162365 (2016)CrossRefGoogle Scholar
- 27.Takács, D., Stépán, G., Hogan, S.J.: Isolated large amplitude periodic motions of towed rigid wheels. Nonlinear Dyn. 52(1), 27–34 (2008)CrossRefMATHGoogle Scholar
- 28.Luongo, A., Zulli, D.: Parametric, external and self-excitation of a tower under turbulent wind flow. J. Sound Vib. 330(13), 3057–3069 (2011)CrossRefGoogle Scholar
- 29.Zulli, D., Luongo, A.: Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. J. Sound Vib. 331(2), 365–383 (2012)CrossRefGoogle Scholar
- 30.Dimitriadis, G.: Introduction to Nonlinear Aeroelasticity. Wiley, Hoboken (2017)CrossRefGoogle Scholar
- 31.Van Heerden, C.: Autothermic processes. Ind. Eng. Chem. 45(6), 1242–1247 (1953)CrossRefGoogle Scholar
- 32.Hlaváček, V., Kubíček, M., Jelinek, J.: Modeling of chemical reactors-XVIII stability and oscillatory behaviour of the CSTR. Chem. Eng. Sci. 25(9), 1441–1461 (1970)CrossRefGoogle Scholar
- 33.Uppal, A., Ray, W., Poore, A.: The classification of the dynamic behavior of continuous stirred tank reactors-influence of reactor residence time. Chem. Eng. Sci. 31(3), 205–214 (1976)CrossRefGoogle Scholar
- 34.Razón, L.F., Schmitz, R.A.: Multiplicities and instabilities in chemically reacting systems-a review. Chem. Eng. Sci. 42(5), 1005–1047 (1987)CrossRefGoogle Scholar
- 35.Doedel, E.: The computer-aided bifurcation analysis of predator-prey models. J. Math. Biol. 20(1), 1–14 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 36.Pavlou, S., Kevrekidis, I.: Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies. Math. Biosci. 108(1), 1–55 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 37.Starosvetsky, Y., Gendelman, O.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008)CrossRefGoogle Scholar
- 38.Starosvetsky, Y., Gendelman, O.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1), 234–256 (2008)CrossRefGoogle Scholar
- 39.Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136(2), 021021 (2014)CrossRefGoogle Scholar
- 40.Starosvetsky, Y., Gendelman, O.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3), 916–939 (2009)CrossRefGoogle Scholar
- 41.Habib, G., Detroux, T., Viguié, R., Kerschen, G.: Nonlinear generalization of Den Hartog’s equal-peak method. Mech. Syst. Signal Process. 52, 17–28 (2015)CrossRefGoogle Scholar
- 42.Habib, G., Kerschen, G.: A principle of similarity for nonlinear vibration absorbers. Phys. D: Nonlinear Phenom. 332, 1–8 (2016)MathSciNetCrossRefGoogle Scholar
- 43.Detroux, T., Habib, G., Masset, L., Kerschen, G.: Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber. Mech. Syst. Signal Process. 60, 799–809 (2015)CrossRefGoogle Scholar
- 44.Alexander, N.A., Schilder, F.: Exploring the performance of a nonlinear tuned mass damper. J. Sound Vib. 319(1), 445–462 (2009)CrossRefGoogle Scholar
- 45.Cirillo, G., Habib, G., Kerschen, G., Sepulchre, R.: Analysis and design of nonlinear resonances via singularity theory. J. Sound Vib. 392, 295–306 (2017)CrossRefGoogle Scholar
- 46.Gatti, G., Brennan, M.J., Kovacic, I.: On the interaction of the responses at the resonance frequencies of a nonlinear two degrees-of-freedom system. Phys. D: Nonlinear Phenom. 239(10), 591–599 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 47.Gatti, G., Kovacic, I., Brennan, M.J.: On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator. J. Sound Vib. 329(10), 1823–1835 (2010)CrossRefGoogle Scholar
- 48.Gatti, G., Brennan, M.J.: On the effects of system parameters on the response of a harmonically excited system consisting of weakly coupled nonlinear and linear oscillators. J. Sound Vib. 330(18), 4538–4550 (2011)CrossRefGoogle Scholar
- 49.Gatti, G.: Uncovering inner detached resonance curves in coupled oscillators with nonlinearity. J. Sound Vib. 372, 239–254 (2016)CrossRefGoogle Scholar
- 50.Gatti, G., Brennan, M.J.: Inner detached frequency response curves: an experimental study. J. Sound Vib. 396, 246–254 (2017)CrossRefGoogle Scholar
- 51.Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)MathSciNetCrossRefGoogle Scholar
- 52.Kuether, R.J., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.S.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)CrossRefGoogle Scholar
- 53.Hill, T., Neild, S., Cammarano, A.: An analytical approach for detecting isolated periodic solution branches in weakly nonlinear structures. J. Sound Vib. 379, 150–165 (2016)CrossRefGoogle Scholar
- 54.Shaw, A., Hill, T., Neild, S., Friswell, M.: Periodic responses of a structure with 3:1 internal resonance. Mech. Syst. Signal Process. 81, 19–34 (2016)CrossRefGoogle Scholar
- 55.Hill, T., Cammarano, A., Neild, S., Barton, D.: Identifying the significance of nonlinear normal modes. In: Proceedings of Royal Society Part A, vol. 473, pp. 20160789. The Royal Society (2017)Google Scholar
- 56.Noël, J.-P., Detroux, T., Masset, L., Kerschen, G., Virgin, L.: Isolated response curves in a base-excited, two-degree-of-freedom, nonlinear system. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V006T10A043–V006T10A043. American Society of Mechanical Engineers (2015)Google Scholar
- 57.Detroux, T., Noël, J.-P., Kerschen, G., Virgin, L.N.: Experimental study of isolated response curves in a two-degree-of-freedom nonlinear system. In: Nonlinear Dynamics, vol. 1, pp. 229–235. Springer (2016)Google Scholar
- 58.Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.-H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3), 522–551 (2007)CrossRefGoogle Scholar
- 59.Spence, A., Jepson, A.D.: The numerical calculation of cusps, bifurcation points and isola formation points in two parameter problems, In: Numerical Methods for the Bifurcation Problems, pp. 502–514. Springer (1984)Google Scholar
- 60.Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. 1. Springer, New York (1985)CrossRefMATHGoogle Scholar
- 61.Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory: An Introduction for Engineers and Applied Scientists. Springer-Verlag, Wien, New York (1991)CrossRefMATHGoogle Scholar
- 62.Drazin, P.G.: Nonlinear Systems, vol. 10. Cambridge University Press, Cambridge (1992)CrossRefMATHGoogle Scholar
- 63.Janovskỳ, V., Plecháč, P.: Computer-aided analysis of imperfect bifurcation diagrams, I. Simple bifurcation point and isola formation centre. SIAM J. Num. Anal. 29(2), 498–512 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 64.Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2009)MATHGoogle Scholar
- 65.Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)MATHGoogle Scholar
- 66.Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.-C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)CrossRefGoogle Scholar
- 67.Holmes, P., Rand, D.: Bifurcations of the forced van der Pol oscillator. Q. Appl. Math. 35(4), 495–509 (1978)MathSciNetCrossRefMATHGoogle Scholar
- 68.Parlitz, U., Lauterborn, W.: Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys. Rev. A 36(3), 1428 (1987)CrossRefGoogle Scholar
- 69.Mettin, R., Parlitz, U., Lauterborn, W.: Bifurcation structure of the driven van der Pol oscillator. Int. J. Bifurc. Chaos 3(06), 1529–1555 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 70.Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der Pol equation I: The slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2(1), 1–35 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 71.Hill, T., Cammarano, A., Neild, S., Wagg, D.: An analytical method for the optimisation of weakly nonlinear systems, In: Proceedings of EURODYN 2014, pp. 1981–1988. Sheffield (2014)Google Scholar