Nonlinear Dynamics

, Volume 93, Issue 2, pp 961–975 | Cite as

Online identification of large-scale chaotic system

  • Vladimir Shemyakin
  • Heikki Haario
Original Paper


The ensemble prediction system (EPS) is an approach employed in meteorology to estimate forecast uncertainty of dynamical systems. In EPS, an ensemble of auxiliary simulations is launched along with the main prediction. Recently, an application with the EPS framework was proposed as a method that enables algorithmic tuning of parameters of large-scale models, in cases where high-CPU demands make usual iterative optimization impractical. The approach was aimed and tested for operational numerical weather prediction models, with a relatively small number of parameters and well-tuned initial values. Here, we present a new version of the approach as a general-purpose parameter estimation method for situations where effective parallel computing is available, but high-CPU requirements exclude the use of standard sequential approaches. We treat the problem as a stochastic optimization task and employ an evolutionary approach, the differential evolution as the optimizer. We demonstrate improved convergence properties, especially for strongly biased initial values or higher number of parameters. For parametric uncertainty quantification, the approach can be considered as a heuristic sampler of the parameter distributions.


Ensemble prediction system Differential evolution Stochastic cost function Stochastic optimization Multiple cost function optimization Uncertainty quantification 



The research has been supported by the Finnish Academy Project 134937 and the Centre of Excellence in Inverse Problems Research (Project Number 250 215).


  1. 1.
    Bengtsson, L., Ghil, M., Källén, E.: Dynamic Meteorology: Data Assimilation Methods, vol. 36. Springer, Berlin (1981). CrossRefzbMATHGoogle Scholar
  2. 2.
    Chakraborty, U.K.: Advances in Differential Evolution, vol. 143. Springer, Berlin (2008). CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, N., Majda, A.J.: Filtering nonlinear turbulent dynamical systems through conditional gaussian statistics. Mon. Weather Rev. 144(12), 4885–4917 (2016). CrossRefGoogle Scholar
  4. 4.
    Feoktistov, V.: Differential Evolution. In Search of Solutions. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Haario, H., Kalachev, L., Hakkarainen, J.: Generalized correlation integral vectors: a distance concept for chaotic dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 25(6), 063,102 (2015). MathSciNetCrossRefGoogle Scholar
  6. 6.
    Haario, H., Saksman, E., Tamminen, J.: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat. 14(3), 375 (1999). CrossRefzbMATHGoogle Scholar
  7. 7.
    Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7(2), 223 (2001). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1), 29–41 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Järvinen, H., Laine, M., Solonen, A., Haario, H.: Ensemble prediction and parameter estimation system: the concept. Q. J. R. Meteorol. Soc. 138(663), 281–288 (2012). CrossRefGoogle Scholar
  10. 10.
    Lahoz, W., Khattatov, B., Ménard, R.: Data Assimilation: Making Sense of Observations. Springer, Berlin (2010). CrossRefzbMATHGoogle Scholar
  11. 11.
    Laine, M., Solonen, A., Haario, H., Järvinen, H.: Ensemble prediction and parameter estimation system: the method. Q. J. R. Meteorol. Soc. 138(663), 289–297 (2012). CrossRefGoogle Scholar
  12. 12.
    Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1), 61–71 (2014). MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lorenz, E.N.: Predictability: a problem partly solved. Predict. Weather Clim. (1996). Google Scholar
  14. 14.
    Ollinaho, P., Bechtold, P., Leutbecher, M., Laine, M., Solonen, A., Haario, H., Järvinen, H.: Parameter variations in prediction skill optimization at ECMWF. Nonlinear Process. Geophys. 20(6), 1001–1010 (2013). CrossRefGoogle Scholar
  15. 15.
    Ollinaho, P., Järvinen, H., Bauer, P., Laine, M., Bechtold, P., Susiluoto, J., Haario, H.: Optimization of NWP model closure parameters using total energy norm of forecast error as a target. Geosci. Model Dev. 7(5), 1889–1900 (2014). CrossRefGoogle Scholar
  16. 16.
    Ollinaho, P., Laine, M., Solonen, A., Haario, H., Järvinen, H.: NWP model forecast skill optimization via closure parameter variations. Q. J. R. Meteorol. Soc. 139(675), 1520–1532 (2013). CrossRefGoogle Scholar
  17. 17.
    Peng, B., Liu, B., Zhang, F.Y., Wang, L.: Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos Solitons Fractals 39(5), 2110–2118 (2009). CrossRefGoogle Scholar
  18. 18.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, vol. 28. Springer, Berlin (2005). zbMATHGoogle Scholar
  19. 19.
    Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. Wiley, New York (2009). CrossRefGoogle Scholar
  20. 20.
    Storn, R., Price, K.: Differential evolution : a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tremolet, Y.: Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132(621), 2483–2504 (2006). CrossRefGoogle Scholar
  22. 22.
    Zupanski, D.: A general weak constraint applicable to operational 4D-var data assimilation systems. Mon. Weather Rev. 125(9), 2274–2292 (1997).<2274:AGWCAT>2.0.CO;2

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Engineering ScienceLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations