Nonlinear Dynamics

, Volume 93, Issue 2, pp 945–960 | Cite as

Parametric identification of fractional-order nonlinear systems

  • Ajith Kuriakose Mani
  • M. D. Narayanan
  • Mihir Sen
Original Paper


This work presents a new method for the identification of fractional-order nonlinear systems from time domain data. A parametric identification technique for integer-order systems using multiple trials is generalized and adapted for identification of fractional-order nonlinear systems. The time response of the system to be identified by two different harmonic excitations are considered. An initial value of the fractional-order term is assumed. Other system parameters are identified for each of the trial data by finding the pseudo-inverse of an equivalent algebraic system. A termination criterion is specified in terms of the error between identified values of system parameters from the two trials. If the error in system parameters does not fall in the specified tolerance, the value of the fractional-order term is varied using gradient descent method and identification is carried out until convergence. The validity of the proposed algorithm is demonstrated by applying it to fractional-order Duffing, van der Pol and van der Pol–Duffing oscillators. Numerical simulations show that the exact and identified parameters are in very close agreement. Comparison of the time taken for identification by the proposed method and those which define error in terms of time response shows the effectiveness of the method. Furthermore, the validity of the proposed method for identification of chaotic fractional-order systems is demonstrated by showing that the identified values are independent of signal time length used.


Parametric identification Fractional-order nonlinear systems Gradient descent method 


  1. 1.
    Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process 86(10), 2645–2657 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Gabano, J.-D., Poinot, T.: Fractional modelling and identification of thermal systems. Signal Process 91(3), 531–541 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gabano, J.-D., Poinot, T., Kanoun, H.: Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory Appl. 5(7), 889–899 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Oustaloup, A., Le Lay, L., Mathieu, B.: Identification of non-integer order system in the time-domain. Proc. CESA 96, 9–12 (1996)Google Scholar
  5. 5.
    Djouambi, A., Voda, A., Charef, A.: Recursive prediction error identification of fractional order models. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2517–2524 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Poinot, T., Trigeassou, J.C.: Identification of fractional systems using an output error technique. J. Nonlinear Dyn. 38, 133–154 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lin, J., Poinot, T., Li, S.T., Trigeassou, J.: Identification of non-integer order systems in frequency domain. J. Control Theory Appl. 25, 517–520 (2008)Google Scholar
  8. 8.
    Valerio, D., Costa, J.S.D.: Identifying digital and fractional transfer functions from a frequency response. Int. J. Control 84, 445–457 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nyikos, L., Pajkossy, T.: Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 30, 1533–1540 (1985)CrossRefGoogle Scholar
  10. 10.
    Djouambia, A., Vodab, A., Charefe, A.: Recursive prediction error identification of fractional-order models. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2517–2524 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Aoun, M., Malti, R., Levron, F., Oustaloup, A.: Synthesis of fractional Laguerre basis for system approximation. Automatica 43(9), 1640–1648 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)zbMATHGoogle Scholar
  13. 13.
    Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  14. 14.
    Podlubny, I.: The Laplace transform method for linear differential equations of fractional-order. The Academy of Sciences. Institute of Experimental Physics, Kosice, In UEF 02-94:1–32 (1994)Google Scholar
  15. 15.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  16. 16.
    Dorcak, L.: Numerical models for simulation of the fractional-order control systems. The Academy of Sciences. Institute of Experimental Physics, Kosice, In UEF 04-94:1–12 (1999)Google Scholar
  17. 17.
    Mikleš, J., Fikar, M.: Process Modelling. Identification and Control. Springer, Berlin (2007)zbMATHGoogle Scholar
  18. 18.
    Oustaloup, A.: From fractality to non-integer derivation through recursivity, a property common to these two concepts: a fundamental idea from a new process control strategy. In: Proceeding of the 12th IMACS World Congress, Paris, July, vol. 3, p. 203 (1988)Google Scholar
  19. 19.
    Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)CrossRefGoogle Scholar
  20. 20.
    Shinbrot, M.: On the analysis of linear and nonlinear dynamic systems from transient-response data. In: National Advisory Committee for Aeronautics NACA. Technical report, Technical Note 3288, Washington (1954)Google Scholar
  21. 21.
    Shinbrot, M.: On the analysis of linear and nonlinear systems. Trans. ASME 79(3), 547–552 (1957)MathSciNetGoogle Scholar
  22. 22.
    Janiczek, T.: Generalization of the modulating functions method into the fractional differential equations. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 593–599 (2010)zbMATHGoogle Scholar
  23. 23.
    Liu, D., Kirati, T.M.L, Gibaru, O., Perruquetti, W.: Identification of fractional order systems using modulating functions method. In: American Control Conference (ACC), pp. 1679–1684. IEEE (2013)Google Scholar
  24. 24.
    Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li-Guo, Y., Qi-Gui, Y.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 305–316 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhou, S., Cao, J., Chen, Y.: Genetic algorithm-based identification of fractional-order systems. Entropy 15(5), 1624–1642 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kougioumtzoglou, I.A., dos Santos, K.R.M., Comerford, L.: Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements. Mech. Syst. Signal Process. 94, 279–296 (2017)CrossRefGoogle Scholar
  28. 28.
    Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Parametric identification of nonlinear systems using multiple trials. Nonlinear Dyn. 48(4), 341–360 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Multiharmonic excitation for nonlinear system identification. J. Sound Vib. 311(3), 707–728 (2008)CrossRefGoogle Scholar
  30. 30.
    Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)CrossRefzbMATHGoogle Scholar
  31. 31.
    Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential-equations for viscoelastic behavior. Rheol. Acta 33(3), 210–219 (1994)CrossRefGoogle Scholar
  32. 32.
    Ghanbari, M., Haeri, M.: Parametric identification of fractional-order systems using a fractional legendre basis. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 224(3), 261–274 (2010)CrossRefGoogle Scholar
  33. 33.
    Tang, Y., Li, N., Liu, M., Lu, Y., Wang, W.: Identification of fractional-order systems with time delays using block pulse functions. Mech. Syst. Signal Process. 91, 382–394 (2017)CrossRefGoogle Scholar
  34. 34.
    Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  35. 35.
    Kougioumtzoglou, I.A., Fragkoulis, V.C., Pantelous, A.A., Pirrotta, A.: Random vibration of linear and nonlinear structural systems with singular matrices: a frequency domain approach. J. Sound Vib. 404, 84–101 (2017)CrossRefGoogle Scholar
  36. 36.
    Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ajith Kuriakose Mani
    • 1
  • M. D. Narayanan
    • 1
  • Mihir Sen
    • 2
  1. 1.Department of Mechanical EngineeringNIT CalicutKozhikkodeIndia
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations