Active control of large-amplitude vibration of a membrane structure

Original Paper
  • 37 Downloads

Abstract

This paper studies active control of large-amplitude vibration of a membrane structure with piezoelectric actuators. First, dynamic equation of large-amplitude vibration of the membrane structure is established based on the von Karman’s large deformation assumption. Next, a four-mode nonlinear model is obtained by applying Galerkin decomposition to the nonlinear dynamic equation. Then, a model reference adaptive controller is designed to suppress the large-amplitude vibration of the membrane structure, and the stability of the controller is proven by Lyapunov’s stability theory. Finally, numerical simulations are carried out to verify the validity of the studies in this paper. Simulation results indicate that the model reference adaptive controller given in this paper can suppress the large-amplitude vibration of the membrane structure effectively; this adaptive controller is robust to modeling errors, and it is also more robust than the classical velocity feedback controller in the presence of actuator disturbance and sensor disturbance.

Keywords

Membrane structure Large-amplitude vibration Active vibration control Model reference adaptive control 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of China [Grant Number 11772187] and the Natural Science Foundation of Shanghai [Grant Number 16ZR1436200].

References

  1. 1.
    Leipold, M., Eiden, M., Garner, C.E.: Solar sail technology development and demonstration. Acta Astronaut. 52, 317–326 (2003)CrossRefGoogle Scholar
  2. 2.
    Fang, H.F., Knarr, K., Quijano, U., Huang, J., Thomson, M.: In-space deployable reflect array antenna: current and future. In: Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Schaumburg, USA (2008)Google Scholar
  3. 3.
    Franchek, M.A., Ryan, M.W., Bernhard, R.J.: Adaptive passive vibration control. J. Sound Vib. 189, 565–585 (1996)CrossRefMATHGoogle Scholar
  4. 4.
    Zhu, S.J., Zheng, Y.F., Fu, Y.M.: Analysis of nonlinear dynamics of a two degree of freedom vibration system with nonlinear damping and nonlinear spring. J. Sound Vib. 271, 15–24 (2004)CrossRefGoogle Scholar
  5. 5.
    Ji, H., Qiu, J., Zhu, K., Badel, A.: Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy. J. Sound Vib. 329, 2751–2767 (2010)CrossRefGoogle Scholar
  6. 6.
    Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012)CrossRefGoogle Scholar
  7. 7.
    Chen, L.X., Pan, J., Cai, G.P.: Active control of a flexible cantilever plate with multiple time delay. Acta Mech. Solida Sin. 21, 257–266 (2008)CrossRefGoogle Scholar
  8. 8.
    Ma, K.: Adaptive non-linear control of a clamped rectangular plate with PZT patches. J. Sound Vib. 264, 835–850 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ashour, O.N., Nayfeh, A.H.: Adaptive control of flexible structures using a nonlinear vibration absorber. Nonlinear Dyn. 28, 309–322 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Fakhari, V., Ohadi, A.: Nonlinear vibration control of functionally graded plate with piezoelectric layers in thermal environment. J. Vib. Control 17, 449–469 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lee, Y.Y., Yuen, K.K., Ng, C.F., Cheng, G.F.: Numerical simulation model of vibration responses of rectangular plates embedded with piezoelectric actuators. Thin-walled Struct. 40, 1–28 (2002)CrossRefGoogle Scholar
  12. 12.
    Lee, Y.Y., Guo, X.: Non-linear vibration suppression of a composite panel subject to random acoustic excitation using piezoelectric actuators. Mech. Syst. Sig. Process. 21, 1153–1173 (2007)CrossRefGoogle Scholar
  13. 13.
    Oates, W.S., Smith, R.C.: Nonlinear optimal control techniques for vibration attenuation using magnetostrictive actuators. J. Intell. Mater. Syst. Struct. 19, 193–209 (2008)CrossRefGoogle Scholar
  14. 14.
    Oates, W.S., Evans, P.G., Smith, R.C., Dapino, M.J.: Experimental implementation of a hybrid nonlinear control design for magnetostrictive actuators. J. Dyn. Syst. Meas. Contr. 131, 041004 (2009)CrossRefGoogle Scholar
  15. 15.
    Huang, Y.A., Deng, Z.C., Xiong, Y.L.: High-order model and slide mode control for rotating flexible smart structure. Mech. Mach. Theory 43, 1038–1054 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Li, L., Song, G., Ou, J.: Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control. J. Vib. Control 16, 1503–1526 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Li, L.Y., Ou, J.P.: Adaptive fuzzy sliding mode control for nonlinear vibration reduction of structure. J. Vib. Eng. 19, 319–325 (2006)Google Scholar
  18. 18.
    Gao, J.X., Shen, Y.P.: Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators. J. Sound Vib. 264, 911–928 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Zhou, Y.H., Wang, J.: Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation. Int. J. Non Linear Mech. 39, 909–920 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Omidi, E., Mahmoodi, S.N.: Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach. Nonlinear Dyn. 79, 835–849 (2015)CrossRefMATHGoogle Scholar
  21. 21.
    Jun, L.: Positive position feedback control for high-amplitude vibration of a flexible beam to a principal resonance excitation. Shock Vib. 17, 187–203 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    El-Ganaini, W.A., Saeed, N.A., Eissa, M.: Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72, 517–537 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ruggiero, E.J., Inman, D.J.: Modeling and control of a 1-D membrane strip with an integrated PZT bimorph. In: ASME: international mechanical engineering congress and exposition, Orlando, USA (2005)Google Scholar
  24. 24.
    Renno, J.M., Inman, D.J.: Modeling and control of a membrane strip using a single piezoelectric bimorph. J. Vib. Control 15, 391–414 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Renno, J.M., Inman, D.J., Chevva, K.R.: Nonlinear control of a membrane mirror strip actuated axially and in bending. AIAA J. 47, 484–493 (2009)CrossRefGoogle Scholar
  26. 26.
    Ruggiero, E.J., Inman, D.J.: Modeling and vibration control of an active membrane mirror. Smart Mater. Struct. 18, 095027 (2009)CrossRefGoogle Scholar
  27. 27.
    Yipaer, F., Sultan, C.: Modern control design for a membrane with bimorph actuators. In: Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Boston, USA (2013)Google Scholar
  28. 28.
    Ferhat, I., Sultan, C.: LQR Using second order vector form for a membrane with bimorph actuators. In: Proceedings of the 23rd AIAA/AHS adaptive structures conference, Kissimmee, USA (2015)Google Scholar
  29. 29.
    Ferhat, I., Sultan, C.: System analysis and control design for a membrane with bimorph actuators. AIAA J. 53, 2110–2120 (2015)CrossRefGoogle Scholar
  30. 30.
    Peng, F., Ng, A., Hu, Y.R.: Actuator placement optimization and adaptive vibration control of plate smart structures. J. Intell. Mater. Syst. Struct. 16, 263–271 (2005)CrossRefGoogle Scholar
  31. 31.
    Amabili, M.: Nonlinear Vibration and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  32. 32.
    Craig, R.R.: Structural Dynamics: An Introduction to Computer Methods. Wiley, New York (1981)Google Scholar
  33. 33.
    Wagg, D.J., Neild, S.A.: Nonlinear Vibration with Control. Springer, Heidelberg (2009)MATHGoogle Scholar
  34. 34.
    Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling, Estimation, and Control. Wiley, New York (1996)MATHGoogle Scholar
  35. 35.
    Shen, Y., Zheng, W., Wang, X.: Dynamic and vibration analysis of a SAR membrane antenna. In: ASME: international mechanical engineering congress and exposition, Washington, USA (2007)Google Scholar
  36. 36.
    Leleu, S., Abou-Kandil, H., Bonnassieux, Y.: Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Trans. Instrum. Meas. 50, 1577–1582 (2001)CrossRefGoogle Scholar
  37. 37.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1, 33–57 (2007)CrossRefGoogle Scholar
  38. 38.
    Dogan, V., Vaicaitis, R.: Active control of non-linear cylindrical shell vibrations under random excitation. J. Intell. Mater. Syst. Struct. 10, 422–429 (1999)CrossRefGoogle Scholar
  39. 39.
    Pradhan, S.C., Reddy, J.N.: Vibration control of composite shells using embedded actuating layers. Smart Mater. Struct. 13, 1245–1257 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Aerospace System EngineeringShanghaiPeople’s Republic of China

Personalised recommendations