Advertisement

Nonlinear Dynamics

, Volume 93, Issue 2, pp 323–333 | Cite as

Boundary control design for a vibrating flexible string system with input nonlinearities

  • Xiuyu He
  • Zhijia Zhao
Original Paper

Abstract

In this paper, the main concern lies in developing a vibration control scheme for globally stabilizing the string system under the influence of input nonlinearities and external disturbance. To that end, an antidisturbance boundary control is presented by merging Lyapunov approach and disturbance observer control theory. Besides, the auxiliary system and auxiliary function are introduced to compensate for the input nonlinearities effects. Using the rigorous analysis without simplifying or discretizing the infinite-dimensional dynamics, the designed control laws can be proven to ensure the uniformly bounded stability of the controlled system. In the end, simulation results are presented for control performance verification.

Keywords

Distributed parameter systems Vibration control Input nonlinearities Disturbance observer Antidisturbance control 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments which helped improve the quality and presentation of this paper. This work was supported in part by the National Natural Science Foundation of China (61603105), by the Scientific Research Foundation of Guangzhou University (2700050341, 2700050356), and by the Science and Technology Planning Project of Guangdong Province (2017B010117007, 2017B090910011).

References

  1. 1.
    Zhou, J., Wen, C.: Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations. Springer, Germany (2008)MATHGoogle Scholar
  2. 2.
    Chen, M., Ge, S.S., Ren, B.B.: Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Tenreiro, J.A.: Machado, fractional order modelling of dynamic backlash, Mechatronics 23(7), 741–745 (2013)CrossRefGoogle Scholar
  4. 4.
    He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)CrossRefGoogle Scholar
  5. 5.
    He, W., He, X.Y., Ge, S.S.: Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Trans. Mechatron. 21(1), 254–265 (2016)Google Scholar
  6. 6.
    Liu, Z.J., Liu, J.K., He, W.: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica 77, 302–310 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, M., Ge, S.S., How, B.: Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)CrossRefGoogle Scholar
  9. 9.
    Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Liu, Z.J., Liu, J.K.: Boundary control of a flexible robotic manipulator with output constraints. Asian J. Control 19(1), 332–345 (2017)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Endo, T., Sasaki, M., Matsuno, F., Jia, Y.: Contact-force control of a flexible timoshenko arm in rigid/soft environment. IEEE Trans. Autom. Control 62(5), 2546–2553 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Do, K.D.: Boundary control design for extensible marine risers in three dimensional space. J. Sound Vib. 388(3), 1–19 (2017)MATHGoogle Scholar
  13. 13.
    Zhao, Z.J., Liu, Y., He, W., Luo, F.: Adaptive boundary control of an axially moving belt system with high acceleration/deceleration. IET Control Theory Appl. 10(11), 1299–1306 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, Z.J., Liu, J.K., He, W.: Dynamic modeling and vibration control of a flexible aerial refueling hose. Aerosp. Sci. Technol. 55, 92–102 (2016)CrossRefGoogle Scholar
  15. 15.
    He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    He, X.Y., He, W., Shi, J., Sun, C.Y.: Boundary vibration control of variable length crane systems in two-dimensional space with output constraints. IEEE/ASME Trans. Mechatron. 22(5), 1952–1962 (2017)CrossRefGoogle Scholar
  17. 17.
    Wu, H.-N., Wang, J.-W.: Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems. Automatica 50(11), 2787–2798 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Alhazza, K.A., Nayfeh, A.H., Daqaq, M.F.: On utilizing delayed feedback for active-multimode vibration control of cantilever beams. J. Sound Vib. 319(3–5), 735–752 (2009)CrossRefGoogle Scholar
  19. 19.
    Guo, B.Z., Jin, F.F.: Backstepping approach to the arbitrary decay rate for Euler–Bernoulli beam under boundary feedback. Int. J. Control 83(10), 2098–2106 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Paranjape, A.A., Guan, J., Chung, S.-J., Krstic, M.: PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans. Robot. 29(3), 625–640 (2013)CrossRefGoogle Scholar
  21. 21.
    He, W., Zhang, S.: Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. 25(1), 351–357 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Nguyen, Q.-C., Hong, K.-S.: Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J. Sound Vib. 331(13), 3006–3019 (2012)CrossRefGoogle Scholar
  24. 24.
    Qu, Z.H.: An iterative learning algorithm for boundary control of a stretched moving string. Automatica 38(5), 821–827 (2002)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zhao, Z.J., Liu, Y., Guo, F., Fu, Y.: Vibration control and boundary tension constraint of an axially moving string system. Nonlinear Dyn. 89(4), 2431–2440 (2017)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lacarbonara, W., Carboni, B., Quaranta, G.: Nonlinear normal modes for damage detection. Meccanica 51(11), 2629–2645 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1863–1874 (2016)CrossRefGoogle Scholar
  28. 28.
    Saghir, S., Younis, M.I.: An investigation of the static and dynamic behavior of electrically actuated rectangular microplates. Int. J. Non Linear Mech. 85, 81–93 (2016)CrossRefGoogle Scholar
  29. 29.
    He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. 13(1), 48–59 (2017)CrossRefGoogle Scholar
  30. 30.
    Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia (2008)CrossRefMATHGoogle Scholar
  31. 31.
    Zhao, Z.J., Liu, Y., Guo, F., Fu, Y.: Modelling and control for a class of axially moving nonuniform system. Int. J. Syst. Sci. 48(4), 849–861 (2017)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Do, K.D.: Stochastic boundary control design for extensible marine risers in three dimensional space. Automatica 77, 184–197 (2017)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Wu, H.-N., Wang, J.-W., Li, H.-X.: Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter systems. IEEE Trans. Fuzzy Syst. 22(3), 642–652 (2014)CrossRefGoogle Scholar
  34. 34.
    Qu, Z.H.: Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans. Autom. Control 46(3), 470–476 (2011)MathSciNetMATHGoogle Scholar
  35. 35.
    Zhao, Z.J., Liu, Y., Luo, F.: Output feedback boundary control of an axially moving system with input saturation constraint. ISA Trans. 68, 22–32 (2017)CrossRefGoogle Scholar
  36. 36.
    He, W., Meng, T.: Adaptive control of a flexible string system with input hysteresis. IEEE Trans. Control Syst. Technol. (2017).  https://doi.org/10.1109/TCST.2017.2669158 (in press)
  37. 37.
    Zhang, S., He, W., Huang, D.Q.: Active vibration control for a flexible string system with input backlash. IET Control Theory Appl. 10(7), 800–805 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    He, W., He, X.Y., Sun, C.Y.: Vibration control of an industrial moving strip in the presence of input deadzone. IEEE Trans. Ind. Electron. 64(6), 4680–4689 (2017)CrossRefGoogle Scholar
  39. 39.
    He, W., Meng, T., Huang, D., Li, X.: Adaptive boundary iterative learning control for an Euler–Bernoulli beam system with input constraint. IEEE Trans. Neural Netw. Learn. Syst. (2017).  https://doi.org/10.1109/TNNLS.2017.2673865 (in press)
  40. 40.
    Zhao, Z.J., Liu, Y., Luo, F.: Boundary control for a vibrating string system with bounded input. Asian J. Control 20(2), 1–9 (2018)MathSciNetGoogle Scholar
  41. 41.
    Yang, Q.-Y., Chen, M.: Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity. Neurocomputing 174, 780–789 (2016)CrossRefGoogle Scholar
  42. 42.
    Rahn, C.D.: Mechatronic Control of Distributed Noise and Vibration. Springer, New York (2001)CrossRefMATHGoogle Scholar
  43. 43.
    Zhao, Z.J., Liu, Z.J., Li, Z.F., Wang, N., Yang, J.F.: Control design for a vibrating flexible marine riser system. J. Frankl. Inst. 354(18), 8117–8133 (2017)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Zhao, Z.J., Wang, X.G., Zhang, C.L., Liu, Z.J., Yang, J.F.: Neural network based boundary control of a vibrating string system with input deadzone. Neurocomputing 275, 1021–1027 (2018)CrossRefGoogle Scholar
  45. 45.
    He, X.Y., He, W., Qin, H., Sun, C. Y.: Boundary vibration control for a flexible timoshenko robotic manipulator. IET Control Theory Appl. (2018) (in press) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Mechanical and Electrical EngineeringGuangzhou UniversityGuangzhouChina

Personalised recommendations