Advertisement

Nonlinear Dynamics

, Volume 92, Issue 4, pp 1975–1983 | Cite as

Autonomous models of self-crossing pinched hystereses for mem-elements

  • Wieslaw Marszalek
Original Paper

Abstract

This paper discusses autonomous implicit models yielding self-crossing trajectories (hystereses with odd symmetry), typical for mem-elements. In particular, the lemniscates of Gerono and Devil result in two systems of differential implicit equations having both a folded saddle at the origin and a pair of equilibria (centers), each located on the opposite sides of singularity (fold curve). The folded saddle at the origin allows a self-crossing pinched hysteretic dynamics. Also, two dual circuits for the Gerono case are presented with the pinched hystereses for inductive (flux versus current) and capacitive (charge versus voltage) mem-elements. When parameters of the circuits change to yield an increased frequency, then the area enclosed by the hysteresis decreases. The time zero-crossing property of the mem-circuits’ signals is also discussed. The Devil’s lemniscate case is linked to Duffing’s equation. The autonomous models are differentiable, and the use of the sign and abs terms, typical in modeling of hystereses, is avoided.

Keywords

Mem-elements Autonomous implicit equations Pinched hystereses Folded saddles 

Notes

Acknowledgements

The author would like to thank two anonymous reviewers for their constructive and helpful comments.

References

  1. 1.
    Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18, 507519 (1971).  https://doi.org/10.1109/TCT.1971.1083337 Google Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 8083 (2008).  https://doi.org/10.1038/nature06932 CrossRefGoogle Scholar
  3. 3.
    Chua, L.O.: The fourth element. Proc. IEEE 100, 19201927 (2012).  https://doi.org/10.1109/JPROC.2012.2190814 CrossRefGoogle Scholar
  4. 4.
    Marszalek, W., Amdeberhan, T.: Memristive jounce (Newtonian) circuits. Appl. Math. Model. 40(4), 2619–2624 (2016).  https://doi.org/10.1016/j.apm.2015.10.012 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145227 (2011).  https://doi.org/10.1080/00018732.2010.544961 CrossRefGoogle Scholar
  6. 6.
    Biolek, D., Biolek, Z., Biolkova, V.: Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be self-crossing. Electr. Lett. 47, 13851387 (2011).  https://doi.org/10.1049/el.2011.2913
  7. 7.
    Wang, F.Z., Shi, L., Wu, H., Helian, N., Chua, L.O.: Fractional memristor. Appl. Phys. Lett. 111, 243502 (2017).  https://doi.org/10.1063/1.5000919 CrossRefGoogle Scholar
  8. 8.
    Marszalek, W.: On the action parameter and one-period loops of oscillatory memristive circuits. Nonl. Dyn. 82(1), 619–628 (2015).  https://doi.org/10.1007/s11071-015-2182-2 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Biolek, Z., Biolek, D., Biolkova, V.: Hysteresis vs PSM of ideal memristors, memcapacitors, and meminductors. Electr. Lett. 52(20), 1669–1671 (2016).  https://doi.org/10.1049/el.2016.2138 CrossRefGoogle Scholar
  10. 10.
    Marszalek, W., Trzaska, Z.: Dynamical models of electric arcs and memristors: the common properties. IEEE Trans. Plasma Sci. 45(2), 259–265 (2017).  https://doi.org/10.1109/TPS.2016.2645879 CrossRefGoogle Scholar
  11. 11.
    Marszalek, W., Amdeberhan, T., Riaza, R.: Singularity crossing phenomena in DAEs: a two-phase fluid flow application case study. Comput. Math. Appl. 49(2–3), 303–319 (2005).  https://doi.org/10.1016/j.camwa.2004.06.030 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Weisstein, E. W.: Eight Curve, From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/EightCurve.html (Accessed 25 Aug 2017)
  13. 13.
    Rider, P.R.: The devil’s curve and Abelian integrals. Am. Math. Mon. 34(4), 199–203 (1927)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hilton, H.: Plane Algebraic Curves. University Press, Oxford (1920)zbMATHGoogle Scholar
  15. 15.
    Weisstein, E. W.: Devil’s curve, MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/DevilsCurve.htm (Accessed 25 Aug 2017)
  16. 16.
    Hale, J., Koçak, H.: Dynamics and Bifurcations. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  17. 17.
    Rovenski, V., Walczak, P.: Geometry and its Applications. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. Chapman and Hall/CRC, Singapore (2006)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations