Skip to main content

Advertisement

Log in

Synchronous dynamics in neural system coupled with memristive synapse

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To study the collective behavior and the regulation mechanism of memristor, the Hindmarsh–Rose neuron cells are selected as the units to construct a coupled system by using the cubic flux-controlled memristor as a connecting synapses, both the firing mode and synchronous behavior in this coupled system are investigated. In this paper, a coefficient is introduced to describe the effect of electromagnetic induction of membrane potential, and the weights of synaptic connection between cells are selected as an adjustable parameter. We have found that, on the one hand, for the certain external current, the firing pattern of neurons could maintain normal state induced by proper electromagnetic induction, and the transition between different firing states could also be observed. On the other hand, both the synchronous effects could be effectively enhanced and the domain of synchronous parameters could be also expanded by tuning the electromagnetic parameters. Particularly, when the coupled system is in the synchronization state, one can see that the firing behavior of neurons will simultaneously change with the varying of the memristance. The similar phenomenon could also be found by introducing the external stimulus signal with a certain frequency. It means that the plasticity of biological synapses could be effectively mimicked by using the memristive synapse and thus the effective memory function of the memristor to the external stimulus signal may be realized. Above results may not only provide some useful clues for understanding the dynamic behavior of neural system coupled with memristive synapses, but also afford us some inspiration to simulate human brain memory, forgetting or some other functions by using the memristor neural network in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brette, R.: Computing with neural synchrony. PLoS Comput. Biol. 8, e1002561 (2012)

    Article  Google Scholar 

  2. Toutounji, H., Pipa, G.: Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations. PLoS Comput. Biol 10, e1003512 (2014)

    Article  Google Scholar 

  3. Liang, L.S., Zhang, J.Q., Liu, L.Z., et al.: Effect of topological connectivity on firing pattern transitions in coupled neurons. Chin. Phys. Lett. 31, 050502 (2014)

    Article  Google Scholar 

  4. Nicolelis, M.A.L., Baccala, L.A., Lin, R.C.S., et al.: Sensorimotor encoding by synchronous neural ensembly activity at multiple levels of the somatosensory system. Science 268, 1353–1358 (1995)

    Article  Google Scholar 

  5. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006)

    Article  Google Scholar 

  6. Zhang, J.Q., Huang, S.F., Pang, S.T., et al.: Synchronization in the uncoupled neuron system. Chin. Phys. Lett. 32, 120502 (2015)

    Article  Google Scholar 

  7. Zhang, J.Q., Wang, C.D., Wang, M.S., et al.: Firing patterns transition induced by system size in coupled Hindmarsh–Rose neural system. Neurocomputing 74, 2961–2966 (2011)

    Article  Google Scholar 

  8. Luo, X.S., Qin, Y.H.: Random long-range connections induce activity of complex Hindmarsh–Rose neural networks. Physica A 387, 2155–2160 (2008)

    Article  Google Scholar 

  9. Wang, Z.Q., Xu, Y., Yang, H.: Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci 59, 371–375 (2016)

    Google Scholar 

  10. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci 58, 2038–2045 (2015)

    Article  Google Scholar 

  11. Chua, L.: Memristor—the missing circuit element. IEEE Trans. Circuits Syst. 18, 507–519 (1971)

    Google Scholar 

  12. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  13. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  14. Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12, e0174330 (2017)

    Article  Google Scholar 

  15. Wang, Y., Ma, J., Xu, Y., et al.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, F.Q., Wang, C.N., Jin, W.Y., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  17. Xu, Y., Ying, H.P., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  18. Ma, J., Wu, F.Q., Wang, C.N.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B. 31, 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ma, J., Lv, M., Zhou, P.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  Google Scholar 

  21. Xu, Y., Jia, Y., Ma, J., et al.: Synchronization between neurons coupled by memristor. Chaos Soliton Fract. 104, 435–442 (2017)

    Article  Google Scholar 

  22. Li, Q.D., Tang, S., Zeng, H.Z., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)

    Article  MATH  Google Scholar 

  23. Bao, B.C., Qian, H., Xu, Q., et al.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11, 1–14 (2017)

    Article  Google Scholar 

  24. Bao, B.C., Qian, H., Wang, J., et al.: Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn. 90, 2359–2369 (2017)

    Article  MathSciNet  Google Scholar 

  25. Jo, S.H., Chang, T., Ebong, I., et al.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  Google Scholar 

  26. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80, 021926 (2009)

    Article  Google Scholar 

  27. Corinto, F., Ascoli, A., Lanza, V., et al.: Memristor synaptic dynamics’ influence on synchronous behavior of two Hindmarsh–Rose neurons. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2403–2408. IEEE (2011)

  28. Ascoli, A., Tetzlaff, R., Lanza, V., et al.: Synchronization properties of a bio-inspired neural network. In: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), pp. 621–624. IEEE (2015)

  29. Ascoli, A., Lanza, V., Corinto, F., et al.: Synchronization conditions in simple memristor neural networks. J. Franklin Inst. 352, 3196–3220 (2015)

    Article  MathSciNet  Google Scholar 

  30. Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn. 87, 1879–1899 (2017)

    Article  Google Scholar 

  31. Prodromakis, T., Phe, B.P., Papavassiliou, C., et al.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron. Dev. 58, 3099–3105 (2011)

    Article  Google Scholar 

  32. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Bio. Sci 221, 87–102 (1984)

    Article  Google Scholar 

  33. Eguia, M.C., Rabinovich, M.I., Abarbanel, H.D.I.: Information transmission and recovery in neural communications channels. Phys. Rev. E. 62, 7111 (2000)

    Article  Google Scholar 

  34. Gonzálex-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron mode. Int. J. Bifurcat. Chaos 17, 3071–3083 (2007)

    Article  MATH  Google Scholar 

  35. Bao, B.C., Wang, N., Xu, Q., et al.: A simple third-order memristive band pass filter chaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 99, 977–981 (2016). https://doi.org/10.1109/TCSII.2016.2641008

    Google Scholar 

  36. Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chuas circuit. Chaos Solitons Fractals 83, 186–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sukhodolsky, D.G., Leckman, J.F., Rothenberger, A., et al.: The role of abnormal neural oscillations in the pathophysiology of co-occurring Tourette syndrome and attention-deficit/hyperactivity disorder. Eur. Child Adolesc. Psychiatry 16, 51–59 (2007)

    Article  Google Scholar 

  38. Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same, coin? PLoS ONE 6, e20572 (2011)

    Article  Google Scholar 

  39. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)

    Article  Google Scholar 

  40. Gonzalez-Sulser, A., Wang, J., Queenan, B.N., et al.: Hippocampal neuron firing and local field potentials in the in vitro 4-aminopyridine epilepsy model. J. Neurophysiol. 108, 2568–2580 (2012)

    Article  Google Scholar 

  41. Wang, H.X., Lu, Q.S., Wang, Q.Y.: Complete synchronization in coupled chaotic HR neurons with symmetric coupling schemes. Chin. Phys. Lett. 22, 2173 (2005)

  42. Rakshit, S., Majhi, S., Bera, B.K., et al.: Time-varying multiplex network: intralayer and interlayer synchronization. Phys. Rev. E 96, 062308 (2017)

    Article  Google Scholar 

  43. Xu, Y., Li, Y., Zhang, H., et al.: The switch in a genetic toggle system with Lévy noise. Sci. Rep. 6, 31505 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The project supported by the Natural Science Foundation of Anhui Province, China (No. 1508085MA15), the Key project of cultivation of leading talents in Universities of Anhui Province (No. gxbjZD2016014), the Innovation and practice research project of graduate students of Anhui Normal University, China (No. 2017cxsj045), and the project of Academic and technical leaders candidate of Anhui Province (2017H117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqian Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist. These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhang, J., Fang, T. et al. Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn 92, 1395–1402 (2018). https://doi.org/10.1007/s11071-018-4134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4134-0

Keywords

Navigation