An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales

  • José M. Balthazar
  • Angelo M. Tusset
  • Reyolando M. L. R. F. Brasil
  • Jorge L. P. Felix
  • Rodrigo T. Rocha
  • Frederic C. Janzen
  • Airton Nabarrete
  • Clivaldo Oliveira
Review
  • 40 Downloads

Abstract

This paper was written in honor of Prof. Viktor Olimpanovich Kononenko from Ukraine and takes into account reports of recent progress about non-ideal vibrating systems (NIS) published in the period from 2004 to 2017. New and old studies of NIS, with limited power supply (small DC motors or electrodynamical shakers), are usually used in laboratory tests, and therefore, the investigation of mutual interactions of driven and driving sub-system is very important. In this paper, main properties of NIS have been reviewed, such as the Sommerfeld effect, i.e., jump phenomena and the increase in power supply that is required by an excitation source operating near resonance; the possibility of saturation phenomenon occurrence, i.e., the transference of energy from higher frequency and lower amplitude to lower frequency and higher amplitude mode; and the existence of regular (periodic motion) and irregular (chaotic motion) behaviors, depending on the value of control parameters (voltage of a DC motor). This paper is divided into two goals: on the one hand will be treated about NIS and on the other hand will be provided an overview of the main engineering applications, analyzing their physical phenomena involved and the adequate methodologies to deal with them.

Keywords

Limited power supply Non-ideal vibrations (NIS) Energy transfer Sommerfeld effect Saturation phenomenon Emergent problems 

Notes

Acknowledgements

The first author acknowledges support from CNPq (GRANT: 306525/2015-1) and CAPES (GRANT CAPES/ITA No. 48/2014). The second author acknowledges support from CNPq (GRANT: 447539/2014-0). The seventh author acknowledges (GRANT 2015/20363-6) from the São Paulo Research Foundation (FAPESP) for the financial support to this research, all Brazilian research funding agencies

References

  1. 1.
    Kononenko, V.O.: Vibrating System of Limited Power Supply. Illife Books, London (1969)Google Scholar
  2. 2.
    Sommerfeld, A.: Beiträge zum dynamischen ausbau der festigkeitslehe. Phys. Z. 3, 266–286 (1902)MATHGoogle Scholar
  3. 3.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)MATHGoogle Scholar
  4. 4.
    Felix, J.L.P., Silva, E.L., Balthazar, J.M., Tusset, A.M., Bueno, A.M., Brasil, R.M.L.R.F.: On nonlinear dynamics and control of a robotic arm with chaos. MATEC Web Conf. 16, 05002 (2014)Google Scholar
  5. 5.
    Balthazar, J.M., Felix, J.L., Brasil, R.M.L.R.F., Krasnopolskaya, T.S., Shvets, A.Y.: Nonlinear interactions in a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source. ASME. J. Comput. Nonlinear Dyn. 4(1), 011013-011013-7 (2008)Google Scholar
  6. 6.
    Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: On saturation control of a non-ideal vibrating portal frame foundation type shear-building. J. Vib. Control 11(1), 121–136 (2005)MATHGoogle Scholar
  7. 7.
    Rocha, R.T., Balthazar, J.M., Quinn, D.D., Tusset, A.M., Felix, J.L.P.: Non-ideal system with quadratic nonlinearities containing a two-to-one internal resonance. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. V008T10A015–V008T10A015 (2016)Google Scholar
  8. 8.
    Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52(11–12), 2583–2602 (2017)MathSciNetGoogle Scholar
  9. 9.
    Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.: Comments on energy harvesting on a 2:1 internal resonance portal frame support structure, using a nonlinear-energy sink as a passive controller. Int. Rev. Mech. Eng. 10(3), 147–156 (2016)Google Scholar
  10. 10.
    Felix, J.L.P., Bianchin, R.P., Almeida, A., Balthazar, J.M., Rocha, R.T., Brasil, R.M.L.R.F.: On energy transfer between vibration modes under frequency-varying excitations for energy harvesting. Appl. Mech. Mater. 849, 65–75 (2016)Google Scholar
  11. 11.
    Gonçalves, P.J.P., Silveira, M., Pontes Junior, B.R., Balthazar, J.M.: The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J. Sound Vib. 333(20,29), 5115–5129 (2014)Google Scholar
  12. 12.
    Bolla, M.R., Balthazar, J.M., Felix, J.L.P., Mook, D.T.: On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn. 50(4), 841–847 (2007)MATHGoogle Scholar
  13. 13.
    Balthazar, J.M.: Nonlinear Dynamic Interactions and Phenomena: Vibrating Systems with Limited Power Supply: An Emergent Topic after Prof. Kononenko. In 5th International Conference on Nonlinear Dynamics. September 27–30, 2016, Kharkov, Ukraine, 16–22 (2016)Google Scholar
  14. 14.
    Balthazar, J.M., Mook, D.T., Weber, H., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P.: An overview on non-ideal vibrations. Meccanica 38(6), 613–621 (2003)MATHGoogle Scholar
  15. 15.
    Balthazar, J.M., Brasil, R.M.F.L., Felix, J.L.P., Tusset, A.M, Piccirillo, V., Souza, L.T.: An overview of nonlinear dynamics of electro-mechanical engineering systems, excited by small motors. In: 23rd International Congress of Mechanical Engineering, Rio de Janeiro, Brazil, pp. 1–10 (2015)Google Scholar
  16. 16.
    Pust, L., Kalous, J., Kratochvil, C., Houfek, L., Houfek, M.: Nonlinear vibrations of complex electromechanical systems. Academy of sciences of the Czech Republic, Institute of Termomechanics. Center of Mechatronics. Prague Czech Republic (2008)Google Scholar
  17. 17.
    Cveticanin, L.: A review on dynamics of mass variable systems. J. Serb. Soc. Comput. Mech. 6(1), 56–74 (2012)Google Scholar
  18. 18.
    Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319(3–5), 1136–1149 (2009)Google Scholar
  19. 19.
    De Souza, S.L.T., Batista, A.M., Baptista, M.S., Caldas, I.L., Balthazar, J.M.: Characterization in bi-parameter space of a non-ideal oscillator. Physica A Stat. Mech. Appl. 466, 224–231 (2017)MathSciNetGoogle Scholar
  20. 20.
    Dantas, M.J.H., Balthazar, J.M.: On the existence and stability of periodic orbits in non-ideal problems: general results. Math. Phys. 58(6), 940–958 (2007)MathSciNetMATHGoogle Scholar
  21. 21.
    Dantas, M.J.H., Balthazar, J.M.: On the appearance of a Hopf bifurcation in a non-ideal mechanical problem. Mech. Res. Commun. 30(5), 493–503 (2003)MathSciNetMATHGoogle Scholar
  22. 22.
    Dantas, M.J.H., Balthazar, J.M., Felix, J.L.P.: On the appearance of of Neimark-Sacker bifurcation in a non-ideal system. In: 11th International Conference on Vibration Problems. 9–12 September 2013, Lisbon, Portugal (2013)Google Scholar
  23. 23.
    González-Carbajal, J., Domínguez, J.: Limit cycles in nonlinear vibrating systems excited by a nonideal energy source with a large slope characteristic. Nonlinear Dyn. 87(2), 1377–1391 (2017)Google Scholar
  24. 24.
    González-Carbajal, J., Domínguez, J.: Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic. Mech. Syst. Signal Process. 96, 366–384 (2017)Google Scholar
  25. 25.
    Cveticanin, L., Zukovic, M., Balthazar, J.M.: Two degree-of-freedom oscillator coupled to a non-ideal source. In: Dynamics of Mechanical Systems with Non-Ideal Excitation. Springer, Cham, pp. 121-140 (2018)Google Scholar
  26. 26.
    Blekman, I., Indeitsev, D.A., Fradkov, A.L.: Slow motions in systems with inertial excitation of vibrations. J. Mach. Manuf. Reliab. 37(1), 21–27 (2008)Google Scholar
  27. 27.
    Awrejcewicz, J., Starosta, R., Sypniewska-Kaminska, G.: Decomposition of governing equations in the analysis of resonant response of a nonlinear and non-ideal vibrating. Nonlinear Dyn. 82(1), 299–309 (2015)Google Scholar
  28. 28.
    Alışverişçi, G.F.,Bayıroğlu, H., Balthazar, J.M., Felix, J.L.P., Brasil, R.M.L.R.F.: On dynamic behavior of a nonideal torsional machine suspension structure. In: Awrejcewicz, J. (eds.) Dynamical Systems: Modelling. DSTA 2015. Springer Proceedings in Mathematics & Statistics. Springer, vol. 181, pp. 1–10 (2016)Google Scholar
  29. 29.
    Mikhlin, Y.V., Klimenko, A.A., Plaksiy, K.Y.: Nonlinear normal modes and their interaction in non-ideal systems with vibration absorber. In: 8th European Nonlinear Dynamics Conference, pp. 1–2 (2014)Google Scholar
  30. 30.
    Plaksiy, K.Y., Mikhlin, Y.V.: Resonance behavior of the limited power-supply system coupled with the nonlinear absorber. Math. Eng. Sci. Aerosp. 6(3), 475–495 (2015)Google Scholar
  31. 31.
    Arbex, H.C., Balthazar, J.M., De Pontes Jr., B.R., Brasil, R.M.L.R.F., Felix, J.L.P., Tusset, A.M., Bueno, A.M.: On nonlinear dynamics behavior and control of a new model of a magnetically levitated vibrating system, excited by an unbalanced DC motor of limited power supply. J. Braz. Soc. Mech. Sci. Eng. 37(4), 1139–1150 (2015)Google Scholar
  32. 32.
    Szmit, Z., Warminski, J.: Nonlinear dynamics of electro-mechanical system composed of two pendulums and rotating hub. Procedia Eng. 144, 953–958 (2016)Google Scholar
  33. 33.
    Krasnopolskaya, T.S., Shevts, A.Y.: Chaos in vibrating systems with a limited power supply. Chaos 3(3), 387–395 (1993)Google Scholar
  34. 34.
    Belato, D., Weber, H.I., Balthazar, J.M., Mook, D.T.: Chaotic vibrations of a nonideal electro-mechanical system. Int. J. Solids Struct. 38(10–13), 1699–1706 (2001)MATHGoogle Scholar
  35. 35.
    Yu, A.: Deterministic chaos of a spherical pendulum under limited excitation. Ukr. Math. J. 59(4), 602–614 (2007)Google Scholar
  36. 36.
    Shvets, A.Y., Sirenko, V.: Complicated scenarios of transitions to deterministic chaos in non-ideal dynamic systems. In: Proceedings of the 5th International Conference on Nonlinear Dynamics, September 27–30, 2016, Kharkov, Ukraine (2016)Google Scholar
  37. 37.
    Shvets, A.Y., Makaseyev, A.M.: Delay factors and chaotization of non-ideal pendulum systems. Chaotic Model. Simul. J. 4, 633–642 (2012)Google Scholar
  38. 38.
    Shvets, A.Y., Makaseyev, A.M.: Modeling of the influence of delay factors on the dynamics of non-ideal pendulum system. Theoretical and applied aspects of cybernetics. In: Proceedings of the 4th International Scientific Conference of Students and Young Scientists—Kyiv: Bukrek, 2014. TAAC’2014 \({\vert }\) Kyiv, Ukraine, pp. 207–214 (2014)Google Scholar
  39. 39.
    Krasnopolskaya, T.S., Shvets, A.Y.: Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks. J. Sound Vib. 322(3), 532–553 (2009)Google Scholar
  40. 40.
    Shvets, A.Y., Sirenko, V.A.: Peculiarities of transition to chaos in nonideal hydrodynamics systems. Chaotic Model. Simul. 2, 303–310 (2012)Google Scholar
  41. 41.
    Navarro, H.A., Balthazar, J.M., Krasnopolskaya, T.S., Shvets, A.Y., Chavarette, F.R.: Remarks on parametric surface waves in a nonlinear and non-ideally excited tank. J. Vib. Acoust. 134(4), 044501-1–044501-6 (2012)Google Scholar
  42. 42.
    Krasnopolskaya, T.S.: Acoustic chaos caused by the Sommerfeld effect. J. Fluids Struct. 8(7), 803–815 (1994)Google Scholar
  43. 43.
    Krasnopolskaya, T.S.: Chaos in acoustic subspace raised by the Sommerfeld–Kononenko effect. Meccanica 41(3), 299–310 (2006)MathSciNetMATHGoogle Scholar
  44. 44.
    Krasnopolskaya, T.S., Shvets, A.Y.: Deterministic chaos in a system generator—piezoceramic transducer. Nonlinear Dyn. Syst. Theory 6(4), 367–380 (2006)MathSciNetMATHGoogle Scholar
  45. 45.
    Shvets, A.Y., Krasnopolskaya, T.S.: Hyperchaos in piezoceramic systems with limited power supply. In: Borisov, A.V., Kozlov, V.V., Mamaev, I.S., Sokolovskiy, M.A. (eds.) IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence. IUTAM Book series, vol. 6. pp. 313–322 (2008)Google Scholar
  46. 46.
    Krasnopolskaya, T.S., Gourjii, A.A., Spektor, V.M., Prykhodko, D.F.: Chaos in parametrically excited continuous systems. Chaotic Model. Simul. 3, 413–422 (2013)Google Scholar
  47. 47.
    Munteanu, L., Brisan, C., Sireteanu, T., Ioan, R.: On the Sommerfeld effect. In: Proceedings of the Annual Symposium of the Institute of Solid Mechanics and Session of the Commission of Acoustics SISOM, pp. 22–23 (2014)Google Scholar
  48. 48.
    Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Heidelberg (2011)MATHGoogle Scholar
  49. 49.
    Balthazar, J.M., Tusset, A.M., Piccirillo, V., Nabarrete, A., Litak, G., Oliveira, C.: On nonlinear dynamic of a non-ideal Duffing system with fractional damping. MATEC Web Conf. 83, 01002-1 (2016)Google Scholar
  50. 50.
    Balthazar, J.M., Brasil, R.M.F.L., Felix, J.L.P., Tusset, A.M., Piccirillo, V., Iluik, I., Nabarrete, A., Oliveira, C.: Dynamics behavior of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities. J. Phys. Conf. Ser. 721(1), 012004-1–012004-12 (2016)Google Scholar
  51. 51.
    Cveticanin, L., Zukovic, M.: Non-ideal mechanical system with an oscillator with rational nonlinearity. J. Vib. Control 21(11), 2149–2164 (2015)MathSciNetMATHGoogle Scholar
  52. 52.
    Evan-Iwanowsk, R.M.: Resonance Oscillators in Mechanical Systems. Elsevier, New York (1976)Google Scholar
  53. 53.
    Alifov, A.A., Frolov, K.V.: Interaction of Non-linear Oscillatory Systems with Energy Sources. CRC Press, New York (1990)MATHGoogle Scholar
  54. 54.
    Warminski, J., Balthazar, J.M.: Vibrations of a parametrically and self-excited system with ideal and non-ideal energy sources. J. Braz. Soc. Mech. Sci. Eng. 25(4), 413–420 (2003)Google Scholar
  55. 55.
    Zukovic, M., Cveticanin, L.: Chaotic responses in a stable duffing system of non-ideal type. J. Vib. Control 13(6), 751–767 (2007)MATHGoogle Scholar
  56. 56.
    El-Badawy, A.A.: Behavioral investigation of a nonlinear nonideal vibrating system. J. Vib. Control 13(2), 203–217 (2007)MathSciNetMATHGoogle Scholar
  57. 57.
    Samantaray, A.K.: Steady-state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn. 56(4), 443–451 (2009)MATHGoogle Scholar
  58. 58.
    Zukovic, M., Cveticanin, L., Maretic, R.: Dynamics of the cutting mechanism with flexible support and non-ideal forcing. Mech. Mach. Theory 58, 1–12 (2012)Google Scholar
  59. 59.
    Cveticanin, L., Zukovic, M.: Motion of a motor-structure non-ideal system. Eur. J. Mech. A/Solids 53, 229–240 (2015)MathSciNetMATHGoogle Scholar
  60. 60.
    Gonçalves, P.J.P., Silveira, M., Petronio, E.A., Pontes Junior, B.R., Balthazar, J.M.: Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica 51(9), 2203–2214 (2016)MathSciNetGoogle Scholar
  61. 61.
    Alisverisci, G.F., Bayiroglu, H., Unal, G.: Nonlinear response of vibrational conveyers with non-ideal vibration exciter: primary resonance. Nonlinear Dyn. 69(4), 1611–1619 (2013)MathSciNetMATHGoogle Scholar
  62. 62.
    Costa, S.N.J., Hassmann, C.H.G., Balthazar, J.M., Dantas, M.J.H.: On energy transfer between. Vibrating systems under linear and nonlinear interactions. Nonlinear Dyn. 57(1–2), 57–67 (2009)MathSciNetMATHGoogle Scholar
  63. 63.
    Dantas, M.J.H., Balthazar, J.M.: On energy transfer between linear and nonlinear oscillator. J. Sound Vib. 315(4–5), 1047–1070 (2008)Google Scholar
  64. 64.
    Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators, Part II: Resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)MathSciNetMATHGoogle Scholar
  65. 65.
    Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 56(1–2), 1–11 (2009)MathSciNetMATHGoogle Scholar
  66. 66.
    Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F., De Paula, A.S.: On an energy exchanged process and appearance of chaos in a non-ideal portal frame dynamical system. Differ. Equ. Dyn. Syst. 21(4), 373–385 (2013)MathSciNetMATHGoogle Scholar
  67. 67.
    Felix, J.L.P., Chong, W., Balthazar, J.M.: The non-ideal problem behavior using a dynamic vibration absorber with nonlinear essential stiffness and time-dependent damping properties. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 227(1), 34–41 (2013)Google Scholar
  68. 68.
    Fosdick, R.L., Ketema, Y.: A thermoviscoelestic dynamic vibration absorber. J. Appl. Mech. 65, 17–24 (1998)Google Scholar
  69. 69.
    Fosdick, R.L., Ketema, Y., Yu, J.H.: Vibration damping through the use of materials with memory. Int. J. Solids Struct. 35, 5–6 (1997)MATHGoogle Scholar
  70. 70.
    De Godoy, W.R.A., Balthazar, J.M., De Pontes Jr, B.R., Felix, J.L.P., Tusset, A.M.: A note on non-linear phenomena in a non-ideal oscillator, with a snap-through truss absorber, including parameter uncertainties. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 227(1), 76–86 (2013)Google Scholar
  71. 71.
    Avramov, K.V., Mikhlin, Y.V.: Snap-through truss as a vibration absorber. J. Vib. Control 10, 291–308 (2004)MathSciNetMATHGoogle Scholar
  72. 72.
    Avramov, K.V., Mikhlin, Y.V.: Snap-through truss as an absorber of forced oscillations. J. Sound Vib. 290, 705–722 (2006)Google Scholar
  73. 73.
    Avramov, K.V., Gendelman, O.V.: Interaction of elastic system with snap-through vibration absorber. Int. J. Non-linear Mech. 44, 81–89 (2009)MATHGoogle Scholar
  74. 74.
    Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. 55(1), 1–11 (2009)MATHGoogle Scholar
  75. 75.
    Yamapi, R., Woafo, P.: Dynamics of an electromechanical damping device with magnetic coupling. Commun. Nonlinear Sci. Numer. Simul. 11, 907–921 (2006)MATHGoogle Scholar
  76. 76.
    Felix, J.L.P., Balthazar, J.M., Dantas, M.H.J.: On a nonideal (MRD) damper-electro-mechanical absorber dynamics. Int. J. Bifurc. Chaos 21(10), 2871–2882 (2011)MATHGoogle Scholar
  77. 77.
    Alisverisci, G.F., Bayiroglu, H., Balthazar, J.M., Felix, J.L.P.: Suppressing chaos in a nonideal double-well oscillator using an based electromechanical damped device. Appl. Mech. Mater. 706, 25–34 (2014)Google Scholar
  78. 78.
    Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: On tuned liquid column dampers mounted on a structural frame under a non-ideal excitation. J. Sound Vib. 282(3–5), 1285–1292 (2005)Google Scholar
  79. 79.
    De Souza, S.L., Caldas, L.I., Viana, R.L., Balthazar, J.M., Brasil, R.M.L.R.F.: Dynamics of vibrating systems with tuned liquid column dampers and limited power supply. J. Sound Vib. 289(4–5), 987–998 (2006)Google Scholar
  80. 80.
    de Souza, S.L.T., Caldas, I.L., Viana, R.L., Balthazar, J.M., Brasil, R.M.L.R.F.: A simple feedback control for a chaotic oscillator with limited power supply. J. Sound Vib. 299(3), 664–671 (2006)MathSciNetMATHGoogle Scholar
  81. 81.
    Zukovic, M., Cveticanin, L.: Chaos in non-ideal mechanical system with clearance. J. Vib. Control 15(8), 1229–1246 (2009)MathSciNetMATHGoogle Scholar
  82. 82.
    Tusset, A.M., Balthazar, J.M., Felix, J.L.P.: On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J. Vib. Control 19(6), 803–813 (2013)MathSciNetMATHGoogle Scholar
  83. 83.
    Tusset, A.M., Balthazar, J.M.: On the chaotic suppression of both ideal and non-ideal duffing based vibrating systems, using a magnetorheological damper. Differ. Equ. Dyn. Syst. 21(1–2), 105–121 (2013)MathSciNetMATHGoogle Scholar
  84. 84.
    Piccirillo, V., Tusset, A.M., Balthazar, J.M.: Dynamical jump attenuation in a non-ideal system through a magneto rheological damper. J. Theor. Appl. Mech. 52(3), 595–604 (2014)Google Scholar
  85. 85.
    Castao, K.A.L., Goes, L.C.S., Balthazar, J.M.: A note on the attenuation of the sommerfeld effect of a non-ideal system taking into account a MR damper and the complete model of a DC motor. J. Vib. Control 17(7), 1112–1118 (2011)MATHGoogle Scholar
  86. 86.
    Tusset, A.M., Bueno, A.M., Dos Santos, J.P.M., Tuschida, M., Balthazar, J.M.: A non-ideally excited pendulum controlled by SDRE technique. J. Braz. Soc. Mech. Sci. Eng. 38(8), 2459–2472 (2016)Google Scholar
  87. 87.
    Blekhman, I.I.: Self-Synhronization in Science and Technology. ASME Press, New York (1988)Google Scholar
  88. 88.
    Dimentberg, M., Cobb, E., Mensching, J.: Self-synchronization of transient rotations in multiple shaft systems. J. Vib. Control 7(2), 221–232 (2001)MATHGoogle Scholar
  89. 89.
    Balthazar, J.M., Felix, J.L.P., Brasil, R.M.L.R.F.: Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure. J. Vib. Control 10(12), 1739–1748 (2004)MATHGoogle Scholar
  90. 90.
    Balthazar, J.M., Felix, J.L.P., Brasil, R.M.L.R.F.: A short note on transverse vibrations of a shaft carrying two (or one) disk excited by a nonideal motor. J. Comput. Nonlinear Dyn. 4(1), 014501-1–014501-6 (2008)Google Scholar
  91. 91.
    Nanha, A.A., Djanan, B.R., Nbendjo, N., Woafo, P.: Self-synchronization of two motors on a rectangular plate and reduction of vibration. J. Vib. Control 21(11), 2114–2123 (2015)Google Scholar
  92. 92.
    De Souza, S.L.T., Caldas, I.L., Viana, R.L., Balthazar, J.M.: Control and chaos for vibro-impact and non-ideal oscillators. J. Theor. Appl. Mech. 46(3), 641–664 (2008)Google Scholar
  93. 93.
    Brasil, R.M.L.F., Feitosa, L.C.S., Balthazar, J.M.: A nonlinear and non-ideal wind generator supporting structure. Appl. Mech. Mater. 5–6, 433–442 (2006)Google Scholar
  94. 94.
    Moraes, F.H., De Pontes, B.R., Silveira, M., Balthazar, J.M., Brasil, R.M.L.R.F.: Influence of ideal and non-ideal excitation sources on the dynamics of a nonlinear vibro-impact system. J. Theor. Appl. Mech. 51(3), 763–774 (2013)Google Scholar
  95. 95.
    Ho, J.H., Nguyen, V.D., Woo, K.C.: Nonlinear dynamics of a new electro-vibro-impact system. Nonlinear Dyn. 63(1–2), 35–49 (2010)MATHGoogle Scholar
  96. 96.
    Piccirillo, V., Balthazar, J.M., De Pontes Jr., B.R., Felix, J.L.P., Felix, J.L.P.: On a nonlinear and chaotic nonideal vibrating system with shape memory alloy (SMA). J. Theor. Appl. Mech. 46(3), 597–620 (2008)Google Scholar
  97. 97.
    Piccirillo, V., Balthazar, J.M., Tusset, A.M., Bernardini, D., Rega, G.: Non-linear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. Int. J. Non-linear Mech. 77, 12–27 (2015)Google Scholar
  98. 98.
    Piccirillo, V., Balthazar, J.M., Tusset, A.M., Bernardini, D., Rega, G.: Characterizing the nonlinear behavior of a pseudoelastic oscillator via the wavelet transform. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(1), 120–132 (2016)Google Scholar
  99. 99.
    Janzen, F.C., Tusset, A.M., Piccirillo, V., Balthazar, J.M., Brasil, R.M.L.R.F.: Motion and vibration control of a slewing flexible structure by SMA actuators and parameter sensitivity analysis. Eur. Phys. J. Spec. Top. 224(14), 3041–3054 (2015)Google Scholar
  100. 100.
    Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermo mechanical derivation with non-constant material functions and refined martensite internal variable. J. Intell. Mater. Syst. Struct. 4, 229–242 (1993)Google Scholar
  101. 101.
    Janzen, F.C., Tusset, A.M., Balthazar, J.M.: Positioning control of a flexible slewing structure by applying sliding mode control. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 8: 28th Conference on Mechanical Vibration and Noise V008T10A013 (2016)Google Scholar
  102. 102.
    Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20(16), 1959–1967 (2009)Google Scholar
  103. 103.
    Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801–040801-23 (2014)Google Scholar
  104. 104.
    Iliuk, I., Balthazar, J.M., Tusset, A.M., Felix, J.L.P., de Pontes, B.R.: On non-ideal and chaotic energy harvester behavior. Differ. Equ. Dyn. Syst. 21(1–2), 93–104 (2013)MathSciNetMATHGoogle Scholar
  105. 105.
    Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.C.R., De Pontes Jr, B.R., Felix, J.L.P., Bueno, A.M.: Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J. Intell. Material Syst. Struct. 25(4), 417–429 (2014)Google Scholar
  106. 106.
    Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.C.R., De Pontes Jr, B.R., Felix, J.L.P.: A non-ideal portal frame energy harvester controlled using a pendulum. Eur. Phys. J. Spec. Top. 222(7), 1575–1586 (2013)Google Scholar
  107. 107.
    Iliuk, I., Brasil, R.M.L.R.F., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Piqueira, J.R.C.: Potential application in energy Harvesting of intermodal exchange in a frame: FEM analysis. Int. J. Struct. Stab. Dyn. 14(8), 1440027-1–1440027-10 (2014)Google Scholar
  108. 108.
    De Paula, A.S., Balthazar, J.M., Felix, J.L.P.: Nonlinear dynamics of a flexible portal frame under support excitation. AIP Conf. Proc. 1493(1), 957–963 (2012)Google Scholar
  109. 109.
    Balthazar, J.M., Felix, J.L.P., Brasil, R.M.R.F.: On an energy transfer and nonlinear, nonideal and chaotic behavior of a macro tuning fork beam (tfb), under an electro-dynamical shaker excitation. Proceedings of 11th Pan-American Congress of Applied Mechanics (PACAM) 2010), January 04-08, 2010, Foz do Iguaçu, PR, Brazil, pp. 1–10 (2010)Google Scholar
  110. 110.
    Balthazar, J.M., Felix, J.L.P.: Revisited Nonlinear Non-ideal Vibrations. Vibration Problems ICOVP (Supplement), Technical University of Liberec, Prague, Czech Public, pp. 84–89 (2011)Google Scholar
  111. 111.
    Jiang, T., Wang, A., Liu, G.: Detection capacitance analysis method for tuning fork micromachined gyroscope based on elastic body model. Sens. Actuators A 128(1), 52–59 (2006)Google Scholar
  112. 112.
    Lee, Y.: A Study of Parametric Excitation Applied to a MEMS Tuning Fork Gyroscope. Ph.D. dissertation Faculty of the Graduate School, University of Missouri, Columbia (2007)Google Scholar
  113. 113.
    Lee, Y., Frank, P., Feng, Z.C.: Nonlinear complex response of a parametrically excited tuning fork. Mech. Syst. Signal Process. 22(5), 1146–1156 (2008)Google Scholar
  114. 114.
    Tehrani, M.G., Balthazar, J.M., Silveira, M.: Parametric study of a macro-scale tuning fork gyroscope. Appl. Mech. Mater. 849, 84–94 (2016)Google Scholar
  115. 115.
    Silveira, M., Corazza, A.N., Tehrani, M.G., Balthazar, J.M.: Nonlinear damping to increase energy transfer in tuning fork gyroscope. In: Proceedings of DINAME 2017—XVII International Symposium on Dynamic Problems of Mechanics, pp. 1–10 (2017)Google Scholar
  116. 116.
    Chavarette, F.R., Balthazar, J.M., Felix, J.L.P.: On Nonlinear Dynamics and Control Design in a MEMS. Dynamics for advances technologies and engineering design. In: Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, held Aberdeen, UK, 27-30 July 2010, pp. 404–419 (2013)Google Scholar
  117. 117.
    Rocha, R. T., Balthazar, J. M., Tusset, A. M., Piccirillo, V.: Using passive control by a pendulum in a portal frame platform with piezoelectric energy harvesting. J. Vib. Control (2017).  https://doi.org/10.1177/1077546317709387

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • José M. Balthazar
    • 1
  • Angelo M. Tusset
    • 2
  • Reyolando M. L. R. F. Brasil
    • 3
  • Jorge L. P. Felix
    • 4
  • Rodrigo T. Rocha
    • 2
  • Frederic C. Janzen
    • 2
  • Airton Nabarrete
    • 5
  • Clivaldo Oliveira
    • 6
  1. 1.Aeronautics Technological InstituteSão José dos CamposBrazil
  2. 2.Federal University of Technology - ParanáPonta GrossaBrazil
  3. 3.Federal University of ABCSanto AndréBrazil
  4. 4.Federal University of Fronteira SulCerro LargoBrazil
  5. 5.Aeronautics Technological InstituteSão José dos CamposBrazil
  6. 6.Federal University of Grande DouradosDouradosBrazil

Personalised recommendations