Advertisement

Nonlinear Dynamics

, Volume 92, Issue 3, pp 1287–1297 | Cite as

On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé–Hoover oscillator

  • Marcelo Messias
  • Alisson C. Reinol
Original Paper
  • 119 Downloads

Abstract

We consider the well-known Sprott A system, which is a special case of the widely studied Nosé–Hoover oscillator. The system depends on a single real parameter a, and for suitable choices of the parameter value, it is shown to present chaotic behavior, even in the absence of an equilibrium point. In this paper, we prove that, for \(a\ne 0,\) the Sprott A system has neither invariant algebraic surfaces nor polynomial first integrals. For \(a>0\) small, by using the averaging method we prove the existence of a linearly stable periodic orbit, which bifurcates from a non-isolated zero-Hopf equilibrium point located at the origin. Moreover, we show numerically the existence of nested invariant tori surrounding this periodic orbit. Thus, we observe that these dynamical elements and their perturbation play an important role in the occurrence of chaotic behavior in the Sprott A system.

Keywords

Sprott A system Nosé–Hoover oscillator Averaging method Periodic orbits Nested invariant tori Invariant algebraic surfaces Chaotic behavior 

Notes

Acknowledgements

The first author is supported by FAPESP Grant Number 2013/24541–0, by CNPq Grant Number 308159/2015–2 and by CAPES - Program CSF-PVE, Grant Number 88881.030454/2013. The second author is supported by FAPESP Grant Number 2013/26602-7. They are also grateful to the anonymous referee who pointed out the equivalence between the Sprott A system and the Nosé–Hoover oscillator, which enabled them to enrich the presentation of the results in this paper, by comparing both systems.

References

  1. 1.
    Baldomá, I., Seara, T.M.: Brakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity. J. Nonlinear Sci. 16, 543–582 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Broer, H.W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theory Dyn. Syst. 4, 509–525 (1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    Buică, A., Giné, J., Llibre, J.: A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter. Phys. D 241, 528–533 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cândido, M.R., Llibre, J., Novaes, D.D.: Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov–Schmidt reduction. Nonlinearity 30, 3560–3586 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9, 1465–1466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York (2002)zbMATHGoogle Scholar
  7. 7.
    Han, M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three-dimensional systems. J. Syst. Sci. Math. Sci. 18, 403–409 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)CrossRefGoogle Scholar
  9. 9.
    Hoover, W.G.: Remark on ‘Some simple chaotic flows’. Phys. Rev. E 51, 759–760 (1995)CrossRefGoogle Scholar
  10. 10.
    Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Special Top. 224, 1469–1476 (2015)CrossRefGoogle Scholar
  12. 12.
    Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034 (2014). (12 pages)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Llibre, J., Messias, M.: Global dynamics of the Nosé–Hoover oscillator: existence of periodic orbits and formation of invariant tori. Preprint (2017)Google Scholar
  15. 15.
    Llibre, J., Novaes, D.D.: Improving the averaging theory for computing periodic solutions of the differential equations. Z. Angew. Math. Phys. 66, 1401–1412 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27, 563–583 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Llibre, J., Xiao, D.: Limit cycles bifurcating from a non-isolated zero-Hopf equilibrium of three-dimensional differential systems. Proc. Am. Math. Soc. 142, 2047–2062 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12, 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Messias, M., Reinol, A.C.: On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system. Nonlinear Dyn. 88, 807–821 (2017)CrossRefzbMATHGoogle Scholar
  21. 21.
    Nosé, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984)CrossRefGoogle Scholar
  22. 22.
    Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the Nosé oscillator: stability, order, and chaos. Phys. Rev. A 33, 4253–4265 (1986)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)zbMATHGoogle Scholar
  25. 25.
    Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sprott, J.C., Hoover, W.G., Hoover, C.G.: Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized Nosé-Hoover oscillators with a temperature gradient. Phys. Rev. E 89, 042914 (2014)CrossRefGoogle Scholar
  28. 28.
    Sprott, J.C., Jafari, S., Pham, V.-T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379, 2030–2036 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin (1996)CrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69, 531–537 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática e Computação, Faculdade de Ciências e TecnologiaUniversidade Estadual Paulista (UNESP)Presidente PrudenteBrazil
  2. 2.Departamento de Matemática, Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual Paulista (UNESP)São José do Rio PretoBrazil

Personalised recommendations