Inducing amplitude death via discontinuous coupling
- 110 Downloads
Abstract
To explore the conditions ensuring amplitude death is always a topic of research for understanding the nature of real systems. However, the previous studies mainly focus on the coupling, that is, continuous or time-invariant. Here we would bring the discontinuous (on–off) coupling to the coupled nonidentical Stuart–Landau oscillators and Rössler oscillators, respectively. We show that the domains of amplitude death can be effectively enlarged along two directions of coupling strength and parameter mismatch. Specifically, the range of coupling strength is extended infinitely for the appropriate on–off rate and on–off period although it usually is considered to be bounded to induce the amplitude death for continuous coupling. Moreover, our findings are of great importance and have many potential applications for the research of neuroscience and biology where the interaction between the neurons or cells is usually intermittent or discontinuous.
Keywords
Coupled oscillators Parameter mismatch Amplitude death Discontinuous couplingNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11272258) and the Seed and Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Grant No. Z2017188).
References
- 1.Saxena, G., Prasad, A., Ramaswamy, R.: Amplitude death: the emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205–228 (2012)CrossRefGoogle Scholar
- 2.Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: Amplitude vs. oscillation death. Phys. Rep. 531, 173–199 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 3.Prasad, A., Lai, Y.C., Gavrielides, A., Kovanis, V.: Amplitude modulation in a pair of time-delay coupled external-cavity semiconductor lasers. Phys. Lett. A 318, 71–77 (2003)CrossRefMATHGoogle Scholar
- 4.Reddy, D.V.R., Sen, A., Johnston, G.L.: Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 85, 3381 (2000)CrossRefGoogle Scholar
- 5.Suzuki, N., Furusawa, C., Kaneko, K.: Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PloS ONE 6, e27232 (2011)CrossRefGoogle Scholar
- 6.Ullner, E., Zaikin, A., Volkov, E.I., García-Ojalvo, J.: Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys. Rev. Lett. 99, 148103 (2007)CrossRefGoogle Scholar
- 7.Aronson, D.G., Erementrout, G.B., Kopell, N.: Amplitude response of coupled oscillators. Physica D 41, 403–449 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 8.Mirollo, R.E., Strogatz, S.H.: Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys. 60, 245–262 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 9.Matthews, P.C., Strogatz, S.H.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65, 1701–1704 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 10.Hou, Z., Xin, H.: Oscillator death on small-world networks. Phys. Rev. E 68, 055103 (2003)CrossRefGoogle Scholar
- 11.Liu, W., Wang, X., Guan, S., Lai, C.H.: Transition to amplitude death in scale-free networks. New. J. Phys. 11, 093016 (2009)CrossRefGoogle Scholar
- 12.Ermentrout, G.B.: Oscillator death in populations of “all to all” coupled nonlinear oscillators. Physica D 41, 219–231 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 13.Liu, W., Xiao, J., Li, L., Wu, Y., Lu, M.: Effects of gradient coupling on amplitude death in nonidentical oscillators. Nonlinear Dyn. 69, 1041–1050 (2012)MathSciNetCrossRefGoogle Scholar
- 14.Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)CrossRefGoogle Scholar
- 15.Strogatz, S.H.: Death by delay. Nature 394, 316–317 (1998)CrossRefGoogle Scholar
- 16.Atay, F.M.: Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91, 1310–1314 (2003)CrossRefGoogle Scholar
- 17.Konishi, K., Kokame, H., Hara, N.: Stability analysis and design of amplitude death induced by a time-varying delay connection. Phys. Lett. A 374, 733–738 (2010)CrossRefMATHGoogle Scholar
- 18.Saxena, G., Prasad, A., Ramaswamy, R.: Dynamical effects of integrative time-delay coupling. Phys. Rev. E 82, 017201 (2010)CrossRefGoogle Scholar
- 19.Karnatak, R., Ramaswamy, R., Prasad, A.: Amplitude death in the absence of time delay in identical coupled oscillators. Phys. Rev. E 76, 432–441 (2007)CrossRefGoogle Scholar
- 20.Zhao, N., Sun, Z., Yang, X., Xu, W.: Restoration of oscillation from conjugate-coupling-induced amplitude death. Europhys. Lett. 118, 30005 (2017)CrossRefGoogle Scholar
- 21.Konishi, K.: Amplitude death induced by dynamic coupling. Phys. Rev. E 68, 13–17 (2003)CrossRefGoogle Scholar
- 22.Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010)CrossRefGoogle Scholar
- 23.Sharma, A., Shrimali, M.D.: Amplitude death with mean-field diffusion. Phys. Rev. E 85, 057204 (2012)CrossRefGoogle Scholar
- 24.Chen, L., Qiu, C., Huang, H.B.: Synchronization with on–off coupling: role of time scales in network dynamics. Phys. Rev. E 79, 045101 (2009)CrossRefGoogle Scholar
- 25.Chen, L., Qiu, C., Huang, H.B., Qi, G.X., Wang, H.J.: Facilitated synchronization of complex networks through a discontinuous coupling strategy. Eur. Phys. J. B 76, 625–635 (2010)CrossRefMATHGoogle Scholar
- 26.Schröder, M., Mannattil, M., Dutta, D., Chakraborty, S., Timme, M.: Transient uncoupling induces synchronization. Phys. Rev. Lett. 115, 054101 (2015)CrossRefGoogle Scholar
- 27.Buscarino, A., Frasca, M., Branciforte, M., Fortuna, L., Sprott, J.C.: Synchronization of two Rössler systems with switching coupling. Nonlinear Dyn. 88, 673–683 (2017)CrossRefGoogle Scholar
- 28.Zou, W., Zheng, X., Zhan, M.: Insensitive dependence of delay-induced oscillation death on complex networks. Chaos 21, 023130 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 29.Zou, W., Tang, Y., Li, L., Kurths, J.: Oscillation death in asymmetrically delay-coupled oscillators. Phys. Rev. E 85, 046206 (2012)CrossRefGoogle Scholar