Advertisement

Nonlinear Dynamics

, Volume 92, Issue 3, pp 1185–1195 | Cite as

Inducing amplitude death via discontinuous coupling

  • Zhongkui Sun
  • Nannan Zhao
  • Xiaoli Yang
  • Wei Xu
Original Paper

Abstract

To explore the conditions ensuring amplitude death is always a topic of research for understanding the nature of real systems. However, the previous studies mainly focus on the coupling, that is, continuous or time-invariant. Here we would bring the discontinuous (on–off) coupling to the coupled nonidentical Stuart–Landau oscillators and Rössler oscillators, respectively. We show that the domains of amplitude death can be effectively enlarged along two directions of coupling strength and parameter mismatch. Specifically, the range of coupling strength is extended infinitely for the appropriate on–off rate and on–off period although it usually is considered to be bounded to induce the amplitude death for continuous coupling. Moreover, our findings are of great importance and have many potential applications for the research of neuroscience and biology where the interaction between the neurons or cells is usually intermittent or discontinuous.

Keywords

Coupled oscillators Parameter mismatch Amplitude death Discontinuous coupling 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11272258) and the Seed and Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Grant No. Z2017188).

References

  1. 1.
    Saxena, G., Prasad, A., Ramaswamy, R.: Amplitude death: the emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205–228 (2012)CrossRefGoogle Scholar
  2. 2.
    Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: Amplitude vs. oscillation death. Phys. Rep. 531, 173–199 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Prasad, A., Lai, Y.C., Gavrielides, A., Kovanis, V.: Amplitude modulation in a pair of time-delay coupled external-cavity semiconductor lasers. Phys. Lett. A 318, 71–77 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Reddy, D.V.R., Sen, A., Johnston, G.L.: Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 85, 3381 (2000)CrossRefGoogle Scholar
  5. 5.
    Suzuki, N., Furusawa, C., Kaneko, K.: Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PloS ONE 6, e27232 (2011)CrossRefGoogle Scholar
  6. 6.
    Ullner, E., Zaikin, A., Volkov, E.I., García-Ojalvo, J.: Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys. Rev. Lett. 99, 148103 (2007)CrossRefGoogle Scholar
  7. 7.
    Aronson, D.G., Erementrout, G.B., Kopell, N.: Amplitude response of coupled oscillators. Physica D 41, 403–449 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mirollo, R.E., Strogatz, S.H.: Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys. 60, 245–262 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Matthews, P.C., Strogatz, S.H.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65, 1701–1704 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hou, Z., Xin, H.: Oscillator death on small-world networks. Phys. Rev. E 68, 055103 (2003)CrossRefGoogle Scholar
  11. 11.
    Liu, W., Wang, X., Guan, S., Lai, C.H.: Transition to amplitude death in scale-free networks. New. J. Phys. 11, 093016 (2009)CrossRefGoogle Scholar
  12. 12.
    Ermentrout, G.B.: Oscillator death in populations of “all to all” coupled nonlinear oscillators. Physica D 41, 219–231 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, W., Xiao, J., Li, L., Wu, Y., Lu, M.: Effects of gradient coupling on amplitude death in nonidentical oscillators. Nonlinear Dyn. 69, 1041–1050 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)CrossRefGoogle Scholar
  15. 15.
    Strogatz, S.H.: Death by delay. Nature 394, 316–317 (1998)CrossRefGoogle Scholar
  16. 16.
    Atay, F.M.: Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91, 1310–1314 (2003)CrossRefGoogle Scholar
  17. 17.
    Konishi, K., Kokame, H., Hara, N.: Stability analysis and design of amplitude death induced by a time-varying delay connection. Phys. Lett. A 374, 733–738 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Saxena, G., Prasad, A., Ramaswamy, R.: Dynamical effects of integrative time-delay coupling. Phys. Rev. E 82, 017201 (2010)CrossRefGoogle Scholar
  19. 19.
    Karnatak, R., Ramaswamy, R., Prasad, A.: Amplitude death in the absence of time delay in identical coupled oscillators. Phys. Rev. E 76, 432–441 (2007)CrossRefGoogle Scholar
  20. 20.
    Zhao, N., Sun, Z., Yang, X., Xu, W.: Restoration of oscillation from conjugate-coupling-induced amplitude death. Europhys. Lett. 118, 30005 (2017)CrossRefGoogle Scholar
  21. 21.
    Konishi, K.: Amplitude death induced by dynamic coupling. Phys. Rev. E 68, 13–17 (2003)CrossRefGoogle Scholar
  22. 22.
    Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010)CrossRefGoogle Scholar
  23. 23.
    Sharma, A., Shrimali, M.D.: Amplitude death with mean-field diffusion. Phys. Rev. E 85, 057204 (2012)CrossRefGoogle Scholar
  24. 24.
    Chen, L., Qiu, C., Huang, H.B.: Synchronization with on–off coupling: role of time scales in network dynamics. Phys. Rev. E 79, 045101 (2009)CrossRefGoogle Scholar
  25. 25.
    Chen, L., Qiu, C., Huang, H.B., Qi, G.X., Wang, H.J.: Facilitated synchronization of complex networks through a discontinuous coupling strategy. Eur. Phys. J. B 76, 625–635 (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Schröder, M., Mannattil, M., Dutta, D., Chakraborty, S., Timme, M.: Transient uncoupling induces synchronization. Phys. Rev. Lett. 115, 054101 (2015)CrossRefGoogle Scholar
  27. 27.
    Buscarino, A., Frasca, M., Branciforte, M., Fortuna, L., Sprott, J.C.: Synchronization of two Rössler systems with switching coupling. Nonlinear Dyn. 88, 673–683 (2017)CrossRefGoogle Scholar
  28. 28.
    Zou, W., Zheng, X., Zhan, M.: Insensitive dependence of delay-induced oscillation death on complex networks. Chaos 21, 023130 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zou, W., Tang, Y., Li, L., Kurths, J.: Oscillation death in asymmetrically delay-coupled oscillators. Phys. Rev. E 85, 046206 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zhongkui Sun
    • 1
  • Nannan Zhao
    • 1
  • Xiaoli Yang
    • 2
  • Wei Xu
    • 1
  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.College of Mathematics and Information ScienceShaan’xi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations