Nonlinear Dynamics

, Volume 92, Issue 3, pp 1159–1166 | Cite as

Limit cycles bifurcating from a zero–Hopf singularity in arbitrary dimension

Original Paper
  • 49 Downloads

Abstract

For a \(C^{m+1}\) differential system on \(\mathbb {R}^n\), we study the limit cycles that can bifurcate from a zero–Hopf singularity, i.e., from a singularity with eigenvalues \(\pm ~bi\) and \(n-2\) zeros for \(n\ge 3\). If the singularity is at the origin and the Taylor expansion of the differential system (without taking into account the linear terms) starts with terms of order m, then \(\ell \) limit cycles can bifurcate from the origin with \(\ell \in \{0,1,\ldots , 2^{n-3}\}\) for \(m=2\) [see Llibre and Zhang (Pac J Math 240:321–341, 2009)], with \(\ell \in \{ 0,1,\ldots ,3^{n-2}\}\) for \(m=3\), with \(\ell \le 6^{n-2}\) for \(m=4\), and with \(\ell \le 4\cdot 5^{n-2}\) for \(m=5\). Moreover, \(\ell \in \{0,1,2\}\) for \(m=4\) and \(n=3\), and \(\ell \in \{0,1,2,3,4,5\}\) for \(m=5\) and \(n=3\). In particular, the maximum number of limit cycles bifurcating from the zero–Hopf singularity grows up exponentially with n for \(m=2,3\).

Keywords

Limit cycles Zero–Hopf singularity Arbitrary dimension 

Mathematics Subject Classification

Primary 37J35 37K10 

Notes

Acknowledgements

The first and third author are partially supported by FCT/Portugal through UID/MAT/04459/2013. The second author is partially supported by a FEDER-MINECO Grant MTM2016-77278-P, a MINECO Grant MTM2013-40998-P, and an AGAUR Grant 2014SGR-568.

References

  1. 1.
    Buica, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cardin, P.T., Llibre, J.: Transcritical and zero–Hopf bifurcations in the Genesio system. Nonlinear Dynam. 88, 547–553 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Champneys, A.R., Kirk, V.: The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities. Phys. D 195, 77–105 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Guckenheimer, J.: On a codimension two bifurcation. Lect. Notes Math. 898, 99–142 (1980)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)CrossRefMATHGoogle Scholar
  6. 6.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Llibre, J., Valls, C.: Hopf bifurcation for some analytic differential systems in \(R^3\) via averaging theory. Discret. Contin. Dyn. Syst. Ser. A 30, 779–790 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Llibre, J., Zhang, X.: Hopf bifurcation in higher dimensional differential systems via the averaging method. Pac. J. Math. 240, 321–341 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)MATHGoogle Scholar
  10. 10.
    Marsden, J.E., McCracken, M.: The Hopf bifurcation and its applications. In: Applied Mathematical Sciences, vol. 19, Springer: New York (1976)Google Scholar
  11. 11.
    Sanders, J.A., Verhulst, F., Murdock, J.: Averaging methods in nonlinear dynamical systems. In: Applied Mathematical Sciences, vol. 59, 2nd Edn. Springer, New York (2007)Google Scholar
  12. 12.
    Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM. J. Math. Anal. 15, 1055–1074 (1984)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Shafarevich, I.R.: Basic Algebraic Geometry. Springer, Berlin (1974)CrossRefMATHGoogle Scholar
  14. 14.
    Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative theory of differential equations. Translations of Mathematical Monographs, vol. 101. American Mathematical Society, Providence (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations