Advertisement

Nonlinear Dynamics

, Volume 92, Issue 3, pp 1147–1156 | Cite as

The suppression of random parameter on the boundary crisis of the smooth and discontinuous oscillator system

  • Liang Wang
  • Mei Huang
  • Wei Xu
  • Limin Jin
Original Paper
  • 177 Downloads

Abstract

In this paper, the effect of random parameter on the boundary crisis of the smooth and discontinuous oscillator system is studied. First of all, we convert this stochastic system into a high-dimensional equivalent deterministic system by means of the orthogonal polynomial approximation. Afterward, the method of composite cell coordinate system is used to exhibit the global dynamical behavior of this system in different state spaces. Then, the attractors, basins of attraction and saddles of this system are obtained. We find that there exists interesting boundary crisis phenomenon in this system and the randomness of parameter has an obvious effect on it. Finally, we make a conclusion that the random parameter could suppress the boundary crisis of this system.

Keywords

Random parameter SD oscillator system Boundary crisis 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation of China (11502199, 11672230).

References

  1. 1.
    Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Phys. D 7, 181–200 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365–5380 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hong, L., Xu, J.: A new type of boundary crises: chaotic boundary crises. Acta Phys. Sin. 50, 612–618 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Livorati, A.L.P., Caldas, I.L., Dettmann, C.P., Leonel, E.D.: Crises in a dissipative bouncing ball model. Phys. Lett. A 379, 2830–2838 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Oliveira, D.F.M., Leonel, E.D., Robnik, M.: Boundary crisis and transient in a dissipative relativistic standard map. Phys. Lett. A 375, 3365–3369 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yue, X., Xu, W., Zhang, Y.: Global bifurcation analysis of Rayleigh–Duffing oscillator through the composite cell coordinate system method. Nonlinear Dyn. 69, 437–457 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yue, X., Xu, W., Wang, L.: Global analysis of boundary and interior crises in an elastic impact oscillator. Commun. Nonlinear Sci. Numer. Simul. 18, 3567–3574 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Feng, J., Xu, W.: Merging crisis of chaotic saddle in a Duffing unilateral vibro-impact system. Acta Phys. Sin. 60, 53–58 (2011)zbMATHGoogle Scholar
  9. 9.
    Han, Q., Xu, W., Yue, X.: Global bifurcation analysis of a Duffing–Van der Pol oscillator with parametric excitation. Int. J. Bifurc. Chaos 24, 1450051 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cao, Q., Wiercigroch, M., Pavlovskaia, E., Thompson, J.M.T., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Phil. Trans. R. Soc. A 366, 635–652 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cao, Q., Wiercigroch, M., Pavlovskaia, E., Thompson, J.M.T., Grebogi, C.: The SD oscillator and its attractors. J. Phys. Conf. Ser. 96, 012064 (2008)CrossRefGoogle Scholar
  12. 12.
    Tian, R., Cao, Q., Li, Z.: Hopf bifurcations for the recently proposed smooth-and-discontinuous oscillator. Chin. Phys. Lett. 27, 074701 (2010)CrossRefGoogle Scholar
  13. 13.
    Tian, R., Yang, X., Cao, Q., Wu, Q.: Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force. Chin. Phys. B 21, 020503 (2012)CrossRefGoogle Scholar
  14. 14.
    Tian, R., Yang, X., Cao, Q., Yang, S.: The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dyn. 59, 19–27 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cao, Q., Xiong, Y., Wiercigroch, M.: Resonances of the SD oscillator due to the discontinuous phase. J. Appl. Anal. Comput. 1, 183–191 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cao, Q., Wiercigroch, M., Pavlovskaia, E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, L., Yue, X., Sun, C., Xu, W.: The effect of the random parameter on the basins and attractors of the elastic impact system. Nonlinear Dyn. 71, 597–602 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018
corrected publication March 2018

Authors and Affiliations

  1. 1.Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations