Nonlinear Dynamics

, Volume 92, Issue 3, pp 1023–1043 | Cite as

Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target

  • Mingming Wang
  • Jianjun Luo
  • Jianping Yuan
  • Ulrich Walter
Original Paper
  • 144 Downloads

Abstract

This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B\(\acute{\text{ e }}\)zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method.

Keywords

Detumbling strategy Coordination control Post-capture Tumbling target 

Notes

Acknowledgements

This research was supported by “the National Natural Science Foundation of China (Grant No. 61603304, 61690210)” and “Shenzhen Future Industry Special Fund (Grant No. JCYJ20160531174213774).”

References

  1. 1.
    Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: ROTEX—the first remotely controlled robot in space. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2604–2611. San Diego, CA (1994)Google Scholar
  2. 2.
    Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1169–1174. San Francisco, CA (2000)Google Scholar
  3. 3.
    Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS, pp. 25–29. Los Angeles, CA (2008)Google Scholar
  4. 4.
    Rekleitis, I., Martin, E., Rouleau, G., L’Archeveque, R., Parsa, K., Dupuis, E.: Autonomous capture of a tumbling satellite. J. Field Robot. 23, 275–296 (2007)CrossRefGoogle Scholar
  5. 5.
    Yoshida, K., Hashizume, K., Abiko, S.: Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–446. Seoul, Korea (2001)Google Scholar
  6. 6.
    Nguyen-Huynh, T., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 4202–4207. Shanghai, China (2011)Google Scholar
  7. 7.
    Shah, S., Sharf, I., Misra, A.: Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Conference on Guidance, Navigation, and Control, Boston, MA (2013)Google Scholar
  8. 8.
    Xu, W., Li, C., Wang, X., Liang, B.: Study on non-holonomic cartesian path planning of a free-floating space robotic system. Adv. Robot. 23(1–2), 113–143 (2009)CrossRefGoogle Scholar
  9. 9.
    Xu, W., Zhang, J., Liang, B., Li, B.: Singularity analysis and avoidance for robot manipulators with non-spherical wrist. IEEE Trans. Ind. Electron. 63(1), 277–290 (2016)CrossRefGoogle Scholar
  10. 10.
    Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3719–3726. Shanghai, China (2011)Google Scholar
  11. 11.
    Wang, M., Luo, J., Walter, U.: Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut. 112, 77–88 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, M., Luo, J., Walter, U.: Novel synthesis method for minimizing attitude disturbance of the free-floating space robots. J. Guid. Control Dyn. 39(3), 695–704 (2016)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Shum, H., Lee, J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992)Google Scholar
  14. 14.
    Matsuno, F., Saito, K.: Attitude control of a space robot with initial angular momentum. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1400–1405. Seoul, Korea (2001)Google Scholar
  15. 15.
    Kai, T.: A Model predictive control approach to attitude stabilization and trajectory tracking control of 3D universal joint space with an initial angular momentum. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3547–3552. St. Orlando, FL (2011)Google Scholar
  16. 16.
    Wang, M., Luo, J., Walter, U.: A non-linear model predictive control with obstacle avoidance for a space robot. Adv. Space Res. 57(8), 1737–1746 (2016)CrossRefGoogle Scholar
  17. 17.
    Khooban, M., Alfi, A., Abadi, D.: Teaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robots. Robotica 31(7), 1059–1071 (2013)CrossRefGoogle Scholar
  18. 18.
    Niknam, T., Khooban, M., Kavousifard, A., Soltanpour, M.: An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn. 75, 73–83 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pan, H., Xin, M.: Nonlinear robust and optimal control of robot manipulators. Nonlinear Dyn. 76, 237–254 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zadeh, S., Khorashadizadeh, S., Fateh, M., Hadadzarif, M.: Optimal sliding mode control of a robot manipulator under uncertainty using PSO. Nonlinear Dyn. 84, 2227–2239 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soltanpour, M., Khooban, M., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433–446 (2014)CrossRefGoogle Scholar
  22. 22.
    Rigatos, G., Siano, P., Raffo, G.: A nonlinear h-infinity control method for multi-DOF robotic manipulators. Nonliear Dyn. 88, 329–348 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wei, C., Luo, J., Dai, H., Yin, Z., Ma, W., Yuan, J.: Globally robust explicit model predictive control of constrained systems exploiting SVM-based approximation. Int. J. Robust Nonlinear Control 27, 3000–3027 (2017)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nenchev, D., Yoshida, K.: Impact analysis and post-impact motion control issue of a free-floating space robot subject to a force impulse. IEEE Trans. Robot. Autom. 15, 548–557 (1999)CrossRefGoogle Scholar
  25. 25.
    Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 4127–4132. Beijing, China (2006)Google Scholar
  26. 26.
    Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1020–1025. Beijing, China (2006)Google Scholar
  27. 27.
    Ren, Y., Zhou, Y., Liu, Y., Jin, M., Liu, H.: Adaptive objective impedance control of dual-arm cooperative humanoid manipulators. In: Proceedings of the 11th World Conference on Intelligent Control and Automation, pp. 3333–3339. Shenyang, China (2014)Google Scholar
  28. 28.
    Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2365–2372. St. Louis, MO (2009)Google Scholar
  29. 29.
    Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. 28(3), 634–649 (2012)CrossRefGoogle Scholar
  30. 30.
    Oki, T., Abiko, S., Nakanishi, H., Yoshida, K.: Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 625–630. San Francisco, CA (2011)Google Scholar
  31. 31.
    Flores-Abad, A., Zhang, L., Wei, Z., Ma, O.: Optimal capture of a tumbling object in orbit using a space manipulator. J. Intell. Robot. Syst. 86, 199–211 (2017)CrossRefGoogle Scholar
  32. 32.
    Zhang, B., Liang, B., Wang, Z., Mi, Y., Zhang, Y., Chen, Z.: Coordinated stabilization for space robot after capturing a noncooperative target with large inertia. Acta Astronaut. 134, 75–84 (2017)CrossRefGoogle Scholar
  33. 33.
    Agrawal, S., Garimella, R., Desmier, G.: Free-floating closed-chain planar robots: kinematics and path planning. Nonlinear Dyn. 9, 1–19 (1996)CrossRefGoogle Scholar
  34. 34.
    Cyril, X., Misra, A., Ingham, M., Jaar, G.: Postcapture dynamics of a spacecraft-manipulator-payload system. J. Guid. Control Dyn. 23, 95–100 (2000)CrossRefGoogle Scholar
  35. 35.
    Wang, M., Walter, U.: Joint-space dynamics algorithm for tree structure space manipulators by using inertia mapping matrix. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, pp. 819–829. Zagreb, Croatia (2013)Google Scholar
  36. 36.
    Xu, W., Peng, J., Liang, B., Mu, Z.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)CrossRefGoogle Scholar
  37. 37.
    Soltanpour, M., Khooban, M.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74, 467–478 (2013)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Clerc, M., Kennedy, J.: The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  39. 39.
    Shi, Y., Everhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Conference on Evolutionary Programming VII, pp. 591–600. San Diego, CA (1998)Google Scholar
  40. 40.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 120–127. Honolulu, HI (2007)Google Scholar
  41. 41.
    Kentzoglanakis, K., Poole, M.: Particle swarm optimization with an oscillating inertia weight. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1749–1750. Montreal, Canada (2009)Google Scholar
  42. 42.
    Trelea, I.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform. Process. Lett. 85, 317–325 (2003)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Helwig, S.: Particle swarms for constrained optimization. Doctoral diss, Erlangen University, Erlangen, Germany (2010)Google Scholar
  44. 44.
    Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13, 398–410 (1997)CrossRefGoogle Scholar
  45. 45.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics modelling, planning and control, 1st edn. Springer, London (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Technology on Aerospace Flight Dynamics LaboratoryNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Research Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
  3. 3.Institute of AstronauticsTechnical University of MunichGarchingGermany

Personalised recommendations