Nonlinear Dynamics

, Volume 92, Issue 3, pp 843–852 | Cite as

A computationally efficient Hill curve adaptation strategy during continuous monitoring of dose–effect relation in anaesthesia

Original Paper
  • 24 Downloads

Abstract

This paper discusses a possibility to simplify the number of parameters in the Hill curve by exploiting special mathematical functions. This simplification is relevant when adaptation is required for personalized model-based medicine during continuous monitoring of dose–response values. A mathematical framework of the involved physiology and modelling by means of distributed parameter progressions has been employed. Convergence to a unique dynamic response is achieved, allowing simplifying assumptions with guaranteed solution. Discussion on its use and comparison with other adaptation mechanism is provided.

Keywords

Hill curve Continuous fraction expansion Mathematical model Nonlinear dynamics Variability Dose–effect relation Patient specificity 

Notes

Acknowledgements

C. M. Ionescu is a postdoctoral fellow of the Flanders Research Centre (FWO), Grant No. 12B3415N. This research is financially supported by Flanders Research Centre, Grant No. G026514N.

References

  1. 1.
    Neckebroek, M., De Smet, T., Struys, M.: Automated drug delivery in anesthesia. Curr. Anesthesiol. Rep. 3, 18–26 (2013)CrossRefGoogle Scholar
  2. 2.
    Ionescu, C., De Keyser, R., Claure-Torrico, B., De Smet, T., Struys, M., Normey-Rico, J.: Robust predictive control strategy applied for propofol using BIS as a controlled variable during anesthesias. IEEE Trans. Biomed. Eng. 55(9), 2161–2170 (2008)CrossRefGoogle Scholar
  3. 3.
    Ionescu, C., Machado, J., De Keyser, R., Decruyenaere, J., Struys, M.: Nonlinear dynamics of the patient’s response to drug effect during general anesthesia. Commun. Nonlinear Sci. Numer. Simul. 20(3), 914–926 (2015)CrossRefGoogle Scholar
  4. 4.
    Nino, J., De Keyser, R., Syafiie, S., Ionescu, C., Struys, M.: EPSAC controlled anesthesia with online gain adaptation, in special issue “Trust me I am a doctor” of the Int. J. Adapt. Control Signal Process. 23, 455–471 (2009)Google Scholar
  5. 5.
    Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., Ducher, M., Maire, P.: The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22, 633–648 (2008)CrossRefGoogle Scholar
  6. 6.
    Rinaki, E., Valsami, G., Macheras, P.: The power-law can describe the entire drug release curve from HPMC-based matrix tablets: a hypothesis. Int. J. Pharm. 255, 199–207 (2003)CrossRefGoogle Scholar
  7. 7.
    Drew, P., Abbott, L.: Models and properties of power-law adaptation in neural systems. J. Neurophysiol. 96, 826–833 (2006)CrossRefGoogle Scholar
  8. 8.
    Weiss, J.: The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997)CrossRefGoogle Scholar
  9. 9.
    De Keyser, R., Ionescu, C.: A no-nonsense control engineering approach to anaesthesia control during induction phase. In: (ed.) IFAC 8th Symposium on Biological and Medical Systems, Budapest, Hungary, 29–31 August. IFAC, pp. 379–384 (2012)Google Scholar
  10. 10.
    Mendonca, T., Lemos, J., Magalhaes, H., Rocha, P., Esteves, S.: Drug delivery for neuromuscular blockade with supervised multimodel adaptive control. IEEE Trans. Control Syst. Technol. 17, 1237–1244 (2009)CrossRefGoogle Scholar
  11. 11.
    Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., Vivacqua, G.: Inversion-based propofol dosing for intravenous induction of hypnosis. Commun. Nonlinear Sci. Numer. Simul. 39, 481–494 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., Vivacqua, G.: Optimized PID control of depth of hypnosis in anesthesia. Comput. Methods Programs Biomed. 144, 21–35 (2017)CrossRefGoogle Scholar
  13. 13.
    Struys, M.M.R.F., De Smet, T., Glen, J.B., Vereecke, H.E.M., Absalom, A.R., Schnider, T.W.: The history of target-controlled infusion. Anesth. Analg. 122, 56–69 (2016)CrossRefGoogle Scholar
  14. 14.
    De Smet, T., Struys, M.M.R.F., Greenwald, S., Mortier, E.P., Shafer, S.L.: Estimation of optimal modeling weights for a bayesian-based closed-loop system for propofol administration using the bispectral index as a controlled variable: a simulation study. Anesth. Analg. 105, 1629–1638 (2007)CrossRefGoogle Scholar
  15. 15.
    Dokoumetzidis, A., Macheras, P.: Fractional kinetics in drug absorption and disposition processes. J. Pharmacokinet. Biopharm. 36, 165–178 (2009)CrossRefGoogle Scholar
  16. 16.
    Pereira, L.: Fractal pharmacokinetics. Comput. Math. Methods Med. 11(2), 161–184 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Butanda, J., Malaga, C., Plaza, G.: On the stabilizing effect of chemotaxis on bacterial aggregation patterns. Appl. Math. Nonlinear Sci. 2(1), 157–172 (2017)CrossRefMATHGoogle Scholar
  18. 18.
    Soltesz, K., Hahn, J., Hägglund, T., Dumont, G., Ansermino, J.: Individualized closed-loop control of propofol anesthesia: a preliminary study. Biomed. Signal Process. Control 8(6), 500–508 (2013)CrossRefGoogle Scholar
  19. 19.
    Shieh, J., Linkens, D., Asbury, A.: A hierarchical system of online advisory for monitoring and controlling the depth of anesthesia using self-organizing fuzzy logic. Eng. Appl. Artif. Intell. 18(3), 307–316 (2005)CrossRefGoogle Scholar
  20. 20.
    Ionescu, C., Nascu, I., De Keyser, R.: Lessons learned from closed loops in engineering: towards a multivariable approach regulating depth of anaesthesia. J. Clin. Monit. Comput. 28(6), 537–546 (2014)CrossRefGoogle Scholar
  21. 21.
    Perez-Garcia, V., Fitzpatrick, S., Perez-Romasanta, L., Pesic, M., Schucht, P., Arana, E., Sanchez-Gomez, P.: Applied mathematics and nonlinear sciences in the war on cancer. App. Math. Nonlinear Sci. 1(2), 423–436 (2016)CrossRefMATHGoogle Scholar
  22. 22.
    Ionescu, C., Copot, D., De Keyser, R.: Modelling doxorubicin effect in various cancer therapies by means of fractional calculus, In: (ed.) American Control Conference, Boston, USA. IEEE, pp. 1283–1288 (2016)Google Scholar
  23. 23.
    Ionescu, C., Copot, D., De Keyser, R.: Anesthesiologist in the loop and predictive algorithm to maintain hypnosis while mimicking surgical disturbance, In: (ed.) IFAC 20th World Congress, Toulouse, France, 9–14 July. IFAC, pp. 15080–15085 (2017)Google Scholar
  24. 24.
    Weiss, M.: Comparison of distributed and compartmental models of drug disposition: assessment of tissue uptake kinetics. J. Pharmacokinet. Pharmacodyn. 43, 505–512 (2016)CrossRefGoogle Scholar
  25. 25.
    Luginbuhl, M., Gerber, A., Schnider, T., Petersen-Felix, S., Arendt-Nielsen, L., Curatolo, M.: Modulation of remifentanil-induced analgesia, hyperalgesia and tolerance by small-dose ketamine in humans. Anesth. Analg. 96, 726–732 (2003)Google Scholar
  26. 26.
    Copot, D., Magin, R., De Keyser, R., Ionescu, C.: Data-driven modelling of drug tissue trapping using anomalous kinetics. Chaos Solitons Fractals Online First (2017).  https://doi.org/10.1016/j.chaos.2017.03.031 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group on Dynamical Systems and Control, Faculty of Engineering and ArchitectureGhent UniversityZwijnaardeBelgium

Personalised recommendations