Skip to main content
Log in

A computationally efficient Hill curve adaptation strategy during continuous monitoring of dose–effect relation in anaesthesia

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses a possibility to simplify the number of parameters in the Hill curve by exploiting special mathematical functions. This simplification is relevant when adaptation is required for personalized model-based medicine during continuous monitoring of dose–response values. A mathematical framework of the involved physiology and modelling by means of distributed parameter progressions has been employed. Convergence to a unique dynamic response is achieved, allowing simplifying assumptions with guaranteed solution. Discussion on its use and comparison with other adaptation mechanism is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neckebroek, M., De Smet, T., Struys, M.: Automated drug delivery in anesthesia. Curr. Anesthesiol. Rep. 3, 18–26 (2013)

    Article  Google Scholar 

  2. Ionescu, C., De Keyser, R., Claure-Torrico, B., De Smet, T., Struys, M., Normey-Rico, J.: Robust predictive control strategy applied for propofol using BIS as a controlled variable during anesthesias. IEEE Trans. Biomed. Eng. 55(9), 2161–2170 (2008)

    Article  Google Scholar 

  3. Ionescu, C., Machado, J., De Keyser, R., Decruyenaere, J., Struys, M.: Nonlinear dynamics of the patient’s response to drug effect during general anesthesia. Commun. Nonlinear Sci. Numer. Simul. 20(3), 914–926 (2015)

    Article  Google Scholar 

  4. Nino, J., De Keyser, R., Syafiie, S., Ionescu, C., Struys, M.: EPSAC controlled anesthesia with online gain adaptation, in special issue “Trust me I am a doctor” of the Int. J. Adapt. Control Signal Process. 23, 455–471 (2009)

  5. Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., Ducher, M., Maire, P.: The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22, 633–648 (2008)

    Article  Google Scholar 

  6. Rinaki, E., Valsami, G., Macheras, P.: The power-law can describe the entire drug release curve from HPMC-based matrix tablets: a hypothesis. Int. J. Pharm. 255, 199–207 (2003)

    Article  Google Scholar 

  7. Drew, P., Abbott, L.: Models and properties of power-law adaptation in neural systems. J. Neurophysiol. 96, 826–833 (2006)

    Article  Google Scholar 

  8. Weiss, J.: The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997)

    Article  Google Scholar 

  9. De Keyser, R., Ionescu, C.: A no-nonsense control engineering approach to anaesthesia control during induction phase. In: (ed.) IFAC 8th Symposium on Biological and Medical Systems, Budapest, Hungary, 29–31 August. IFAC, pp. 379–384 (2012)

  10. Mendonca, T., Lemos, J., Magalhaes, H., Rocha, P., Esteves, S.: Drug delivery for neuromuscular blockade with supervised multimodel adaptive control. IEEE Trans. Control Syst. Technol. 17, 1237–1244 (2009)

    Article  Google Scholar 

  11. Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., Vivacqua, G.: Inversion-based propofol dosing for intravenous induction of hypnosis. Commun. Nonlinear Sci. Numer. Simul. 39, 481–494 (2016)

    Article  MathSciNet  Google Scholar 

  12. Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., Vivacqua, G.: Optimized PID control of depth of hypnosis in anesthesia. Comput. Methods Programs Biomed. 144, 21–35 (2017)

    Article  Google Scholar 

  13. Struys, M.M.R.F., De Smet, T., Glen, J.B., Vereecke, H.E.M., Absalom, A.R., Schnider, T.W.: The history of target-controlled infusion. Anesth. Analg. 122, 56–69 (2016)

    Article  Google Scholar 

  14. De Smet, T., Struys, M.M.R.F., Greenwald, S., Mortier, E.P., Shafer, S.L.: Estimation of optimal modeling weights for a bayesian-based closed-loop system for propofol administration using the bispectral index as a controlled variable: a simulation study. Anesth. Analg. 105, 1629–1638 (2007)

    Article  Google Scholar 

  15. Dokoumetzidis, A., Macheras, P.: Fractional kinetics in drug absorption and disposition processes. J. Pharmacokinet. Biopharm. 36, 165–178 (2009)

    Article  Google Scholar 

  16. Pereira, L.: Fractal pharmacokinetics. Comput. Math. Methods Med. 11(2), 161–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Butanda, J., Malaga, C., Plaza, G.: On the stabilizing effect of chemotaxis on bacterial aggregation patterns. Appl. Math. Nonlinear Sci. 2(1), 157–172 (2017)

    Article  MATH  Google Scholar 

  18. Soltesz, K., Hahn, J., Hägglund, T., Dumont, G., Ansermino, J.: Individualized closed-loop control of propofol anesthesia: a preliminary study. Biomed. Signal Process. Control 8(6), 500–508 (2013)

    Article  Google Scholar 

  19. Shieh, J., Linkens, D., Asbury, A.: A hierarchical system of online advisory for monitoring and controlling the depth of anesthesia using self-organizing fuzzy logic. Eng. Appl. Artif. Intell. 18(3), 307–316 (2005)

    Article  Google Scholar 

  20. Ionescu, C., Nascu, I., De Keyser, R.: Lessons learned from closed loops in engineering: towards a multivariable approach regulating depth of anaesthesia. J. Clin. Monit. Comput. 28(6), 537–546 (2014)

    Article  Google Scholar 

  21. Perez-Garcia, V., Fitzpatrick, S., Perez-Romasanta, L., Pesic, M., Schucht, P., Arana, E., Sanchez-Gomez, P.: Applied mathematics and nonlinear sciences in the war on cancer. App. Math. Nonlinear Sci. 1(2), 423–436 (2016)

    Article  MATH  Google Scholar 

  22. Ionescu, C., Copot, D., De Keyser, R.: Modelling doxorubicin effect in various cancer therapies by means of fractional calculus, In: (ed.) American Control Conference, Boston, USA. IEEE, pp. 1283–1288 (2016)

  23. Ionescu, C., Copot, D., De Keyser, R.: Anesthesiologist in the loop and predictive algorithm to maintain hypnosis while mimicking surgical disturbance, In: (ed.) IFAC 20th World Congress, Toulouse, France, 9–14 July. IFAC, pp. 15080–15085 (2017)

  24. Weiss, M.: Comparison of distributed and compartmental models of drug disposition: assessment of tissue uptake kinetics. J. Pharmacokinet. Pharmacodyn. 43, 505–512 (2016)

    Article  Google Scholar 

  25. Luginbuhl, M., Gerber, A., Schnider, T., Petersen-Felix, S., Arendt-Nielsen, L., Curatolo, M.: Modulation of remifentanil-induced analgesia, hyperalgesia and tolerance by small-dose ketamine in humans. Anesth. Analg. 96, 726–732 (2003)

  26. Copot, D., Magin, R., De Keyser, R., Ionescu, C.: Data-driven modelling of drug tissue trapping using anomalous kinetics. Chaos Solitons Fractals Online First (2017). https://doi.org/10.1016/j.chaos.2017.03.031

    Google Scholar 

Download references

Acknowledgements

C. M. Ionescu is a postdoctoral fellow of the Flanders Research Centre (FWO), Grant No. 12B3415N. This research is financially supported by Flanders Research Centre, Grant No. G026514N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara M. Ionescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionescu, C.M. A computationally efficient Hill curve adaptation strategy during continuous monitoring of dose–effect relation in anaesthesia. Nonlinear Dyn 92, 843–852 (2018). https://doi.org/10.1007/s11071-018-4095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4095-3

Keywords

Navigation