Skip to main content
Log in

Chaotic predation scheme for age-clustered one predator–one prey Lotka–Volterra

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Lotka–Volterra differential equations deal with modeling of predator and prey populations and interrelation of population sizes in a continuous domain. Since all populations, be they predators or prays, are only the estimates in consequence of sampling process, this paper initially concerns with discretization schemes of one predator–prey Lotka–Volterra systems. Second-order Runge–Kutta approximation is used to discretize the original differential equations for flexibility to manipulate the system parameters. Subsequent to discretization, a novel predation scheme is introduced to enhance the rationalization of original model with age cluster-based and detailed rules which are based on reproductivity, predation ability, predation essentiality, food provision and consumption. Aging is also simulated with transitive structure of the algorithms that the alive individuals are getting older and changing clusters after the predation scheme is operated. Experiments revealed that our model exhibits not only fluctuations like the original model but also stable trajectories and fractal structure depending on the model parameters. Therefore, the main novelty of this paper briefly is the discovery of chaotic one predator–one prey system exhibiting chaotic behavior for a narrow interval and revealing a strange attractor which is very unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. U. S. A. 6(7), 410–415 (1920)

    Article  Google Scholar 

  2. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

  3. Goh, B.S.: Global stability in two species interactions. J. Math. Biol. 3(3–4), 313–318 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kar, T.K., Ghorai, A.: Dynamic behaviour of a delayed predator–prey model with harvesting. Appl. Math. Comput. 217(22), 9085–9104 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Jana, S., Kar, T.K.: Modeling and analysis of a prey–predator system with disease in the prey. Chaos Solitons Fractals 47, 42–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, S., Dong, L., Chen, L.: The study of predator–prey system with defensive ability of prey and impulsive perturbations on the predator. Chaos Solitons Fractals 23(2), 631–643 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jana, S., Ghorai, A., Guria, S., Kar, T.K.: Global dynamics of a predator, weaker prey and stronger prey system. Appl. Math. Comput. 250, 235–248 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Kar, T., Batabyal, A.: Persistence and stability of a two prey one predator system. Int. J. Eng. Sci. Technol. 2(2), 174–190 (2010)

    Article  MATH  Google Scholar 

  9. Hutson, V., Vickers, G.: A criterion for permanent coexistence of species with an application to two prey, one predator system. Math. Biosci. 63, 253–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kar, T., Chaudhury, K.: Harvesting in a two-prey one-predator fishery. ANZIAM J. 45, 443–456 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elettreby, M.: Two-prey one-predator model. Chaos Solitons Fractals 39, 2018–2027 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Y., Xiu, Z., Chen, L.: Dynamic complexity of a two-prey one-predator system with impulsive effect. Chaos Solitons Fractals 26, 131–139 (2005)

    Article  MATH  Google Scholar 

  13. Butler, G., Waltman, P.: Bifurcation from a limit cycle in a two predator–one prey ecosystem modeled on a chemostat. J. Math. Biol. 12, 295–310 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cushing, J.: Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44, 392–410 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farkas, M.: Zip bifurcation in a competition model. Nonlinear Anal. 8, 1295–1309 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muratori, S., Rinaldi, S.: Remarks on competition coexistence, (1989). SIAM J. Appl. Math. 49, 1462–1472 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Smith, H.: The interaction of steady state and Hopf bifurcations in a two-predator one-prey competition model. SIAM J. Appl. Math. 42, 27–43 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29(2), 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, R., Xiao, D.: Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka–Volterra system. Nonlinear Dyn. 59(3), 411–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smale, S.: On the differential equations of species in compepetition. J. Math. Biol. 3, 5–7 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vano, J.A., Wildenberg, J.C., Anderson, M.B., Noel, J.K., Sprott, J.C.: Chaos in low-dimensional Lotka–Volterra models of competition. Nonlinearity 19(10), 2391–2404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sprott, J.C., Wildenberg, J.C., Azizi, Y.: A simple spatiotemporal chaotic Lotka–Volterra model. Chaos Solitons Fractals 26(4), 1035–1043 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geijzendorffer, I.R., Van der Werf, W., Bianchi, F.J.J.A., Schulte, R.P.O.: Sustained dynamic transience in a Lotka–Volterra competition model system for grassland species. Ecol. Model. 222(15), 2817–2824 (2011)

    Article  Google Scholar 

  24. Thierry, H., Sheeren, D., Marilleau, N., Corson, N., Amalric, M., Monteil, C.: From the Lotka–Volterra model to a spatialised population-driven individual-based model. Ecol. Model. (2014). https://doi.org/10.1016/j.ecolmodel.2014.09.022

  25. Llibre, J., Xiao, D.: Global dynamics of a Lotka–Volterra model with two predators competing for one prey. SIAM J. Appl. Math. 74(2), 434–453 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, D., Ji, C., Li, X., O’Regan, D.: Analysis of autonomous Lotka–Volterra competition systems with random perturbation. J. Math. Anal. Appl. 390(2), 582–595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doust, M.R., Gholizade, S.: An analysis of the modified Lotka–Volterra predator–prey model. Gen 25(2), 1–5 (2014)

    Google Scholar 

  28. He, Q., Täuber, U.C., Zia, R.K.P.: On the relationship between cyclic and hierarchical three-species predator–prey systems and the two-species Lotka–Volterra model. Eur. Phys. J. B 85(4), 1–13 (2012)

    MathSciNet  Google Scholar 

  29. Muhammadhaji, A., Teng, Z., Rehim, M.: On a two species stochastic Lotka–Volterra competition system. J. Dyn. Control Syst. 21(3), 495–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Q., Jiang, D.: The coexistence of a stochastic Lotka–Volterra model with two predators competing for one prey. Appl. Math. Comput. 269, 288–300 (2015)

    MathSciNet  Google Scholar 

  31. Droz, M., Pękalski, A.: Coexistence in a predator–prey system. Phys. Rev. E 63(5), 051909/1-6 (2001)

    Article  MATH  Google Scholar 

  32. Trojan, K., Pękalski, A.: Dynamics of a predator–prey model in a habitat with cover. Phys. A Stat. Mech. Appl. 330(1), 130–138 (2003)

    Article  MATH  Google Scholar 

  33. Zhu, C., Yin, G.: On competitive Lotka–Volterra model in random environments. J. Math. Anal. Appl. 357(1), 154–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reichenbach, T., Mobilia, M., Frey, E.: Coexistence versus extinction in the stochastic cyclic Lotka–Volterra model. Phys. Rev. E 74(5), 051907 (2006)

    Article  MathSciNet  Google Scholar 

  35. Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. 24(2), 523–593 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, F.: Positive periodic solutions of neutral Lotka–Volterra system with feedback control. Appl. Math. Comput. 162(3), 1279–1302 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Molter, A., Rafikov, M.: Nonlinear optimal control of population systems: applications in ecosystems. Nonlinear Dyn. 76(2), 1141–1150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krivine, H., Lesne, A., Treiner, J.: Discrete-time and continuous-time modelling: some bridges and gaps. Math. Struct. Comput. Sci. 17(02), 261–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The work and the contribution were supported by the project “Smart Solutions in Ubiquitous Computing Environments”, Grant Agency of Excellence, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (Grant No. UHK-FIM-GE-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orcan Alpar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpar, O. Chaotic predation scheme for age-clustered one predator–one prey Lotka–Volterra. Nonlinear Dyn 92, 499–510 (2018). https://doi.org/10.1007/s11071-018-4071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4071-y

Keywords

Navigation