Nonlinear Dynamics

, Volume 92, Issue 2, pp 463–477 | Cite as

Autoparametric amplification of two nonlinear coupled mass–spring systems

Original Paper
  • 152 Downloads

Abstract

This paper discusses a new excitation condition for two coupled mass–spring systems under autoparametric resonance. In particular, we are interested in analyzing the force and frequency response of the pitch–roll ship mathematical model. A new excitation condition of this model is investigated by directly exciting each degree of freedom using an external force while keeping the excitation frequency near the resonance frequency of each degree of freedom. We found that by choosing certain excitation parameters, the amplitude of oscillation of the primarily mode increases when the force that directly excites the secondary mode is elevated. This phenomenon has some similarity with the parametric amplification condition; therefore, we call this excitation condition the autoparametric amplification. Other interesting behaviors were captured such as autoparametric attenuation and two types of amplitude saturation. Finally, we show that a T-shaped microresonator can experience autoparametric amplification by choosing appropriate geometrical design and actuation conditions.

Keywords

Autoparametric system Pitch–roll Parametric amplification 

References

  1. 1.
    Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.H.: Five parametric resonances in a microelectromechanical system. Nature 396(6707), 149–152 (1998)CrossRefGoogle Scholar
  2. 2.
    Khirallah, K.: Parametric excitation, amplification, and tuning of mems folded-beam comb drive oscillator. J. Microelectromech. Syst. 22(2), 318–330 (2013)CrossRefGoogle Scholar
  3. 3.
    Berlioz, A., Dufour, R., Sinha, S.: Bifurcation in a nonlinear autoparametric system using experimental and numerical investigations. Nonlinear Dyn. 23(2), 175–187 (2000)CrossRefMATHGoogle Scholar
  4. 4.
    Tondl, A.: Autoparametric Resonance in Mechanical Systems. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  5. 5.
    Chen, H., Xu, Q.: Global bifurcations in externally excited autoparametric systems. Int. J. Non-Linear Mech. 45(8), 766–792 (2010)CrossRefGoogle Scholar
  6. 6.
    Nabergoj, R., Tondl, A., Virag, Z.: Autoparametric resonance in an externally excited system. Chaos Solitons Fract. 4(2), 263–273 (1994)CrossRefMATHGoogle Scholar
  7. 7.
    Yan, Z., Taha, H.E., Tan, T.: Nonlinear characteristics of an autoparametric vibration system. J. Sound Vib. 390, 1–22 (2017)CrossRefGoogle Scholar
  8. 8.
    Hui, C., Ng, C.: Autoparametric vibration absorber effect to reduce the first symmetric mode vibration of a curved beam/panel. J. Sound Vib. 330(18), 4551–4573 (2011)CrossRefGoogle Scholar
  9. 9.
    Pan, R., Davies, H.: Responses of a non-linearly coupled pitch-roll ship model under harmonic excitation. Nonlinear Dyn. 9(4), 349–368 (1996)CrossRefGoogle Scholar
  10. 10.
    Sayed, M., Hamed, Y.: Stability and response of a nonlinear coupled pitch-roll ship model under parametric and harmonic excitations. Nonlinear Dyn. 64(3), 207–220 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kamel, M.: Bifurcation analysis of a nonlinear coupled pitch-roll ship. Math. Comput. Simul. 73(5), 300–308 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zhou, L., Chen, F.: Stability and bifurcation analysis for a model of a nonlinear coupled pitch-roll ship. Math. Comput. Simul. 79(2), 149–166 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nabergoj, R., Tondl, A., Virag, Z.: Autoparametric resonance in an externally excited system. Chaos Solitons Fract. 4(2), 263–273 (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Yu, T.-J., Zhang, W., Yang, X.-D.: Global dynamics of an autoparametric beam structure. Nonlinear Dyn. 88(2), 1329–1343 (2017).  https://doi.org/10.1007/s11071-016-3313-0
  15. 15.
    Ikeda, T.: Nonlinear parametric vibrations of an elastic structure with a rectangular liquid tank. Nonlinear Dyn. 33(1), 43–70 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Vyas, A., Peroulis, D., Bajaj, A.K.: Dynamics of a nonlinear microresonator based on resonantly interacting flexural-torsional modes. Nonlinear Dyn. 54(1–2), 31–52 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Van der Avoort, C., Van der Hout, R., Bontemps, J., Steeneken, P., Le Phan, K., Fey, R., Hulshof, J., van Beek, J.: Amplitude saturation of mems resonators explained by autoparametric resonance. J. Micromech. Microeng. 20(10), 105012 (2010)CrossRefGoogle Scholar
  18. 18.
    Daqaq, M.F., Abdel-Rahman, E.M., Nayfeh, A.H.: Two-to-one internal resonance in microscanners. Nonlinear Dyn. 57(1–2), 231–251 (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)MATHGoogle Scholar
  20. 20.
    Zalalutdinov, M., Zehnder, A., Olkhovets, A., Turner, S., Sekaric, L., Ilic, B., Czaplewski, D., Parpia, J.M., Craighead, H.G.: Autoparametric optical drive for micromechanical oscillators. Appl. Phys. Lett. 79(5), 695–697 (2001)CrossRefGoogle Scholar
  21. 21.
    Vyas, A., Peroulis, D., Bajaj, A.K.: A microresonator design based on nonlinear 1:2 internal resonance in flexural structural modes. J. Microelectromech. Syst. 18(3), 744–762 (2009)CrossRefGoogle Scholar
  22. 22.
    Rahman, Z., Burton, T.: On higher order methods of multiple scales in non-linear oscillations-periodic steady state response. J. Sound Vib. 133(3), 369–379 (1989)CrossRefMATHGoogle Scholar
  23. 23.
    Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40(1), 61–102 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Luongo, A., Paolone, A.: On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn. 19(2), 135–158 (1999)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Clewley, R.: Hybrid models and biological model reduction with pydstool. PLoS Comput. Biol. 8(8), e1002628 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations