Nonlinear Dynamics

, Volume 92, Issue 2, pp 443–461 | Cite as

Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design

  • Donghai Qiu
  • Tao Li
  • Sébastien Seguy
  • Manuel Paredes
Original Paper
  • 227 Downloads

Abstract

This paper is dedicated to the optimal design of a bistable nonlinear energy sink (NES) for the vibration control of a periodically excited linear oscillator. This system with negative linear and cubic nonlinear coupling is analytically studied with the method of multiple scales. As a result, a slow invariant manifold is obtained and is applied to predict four typical response regimes at different energy levels. Moreover, asymptotic analysis and Melnikov analysis are, respectively, used to obtain the thresholds of these typical responses. Through their efficiency comparison, it is observed that the bistable NES can be efficient and robust in a broad range of excitation amplitude. With the Hilbert transform and wavelet transform, targeted energy transfer with transient or permanent 1:1 resonance is found to be responsible for the effectiveness of such responses as strongly modulated response and 1:1 resonance. Finally, an optimal design criterion and a corresponding parameter configuration are proposed to guide the application of this type of NES.

Keywords

Targeted energy transfer Bistable NES Slow invariant manifold Strongly modulated response Excitation threshold Optimal design 

References

  1. 1.
    Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer, Berlin (2008)MATHGoogle Scholar
  2. 2.
    Lee, Y., Vakakis, A.F., Bergman, L., McFarland, D., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 222(2), 77–134 (2008)Google Scholar
  3. 3.
    Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., Mcloskey, R.: Energy pumping in nonlinear mechanical oscillators: part I: dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II: resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3), 522–551 (2007)CrossRefGoogle Scholar
  6. 6.
    Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45(10), 2391–2400 (2007)CrossRefGoogle Scholar
  7. 7.
    Viguié, R., Kerschen, G., Golinval, J.C., McFarland, D., Bergman, L., Vakakis, A., Van de Wouw, N.: Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech. Syst. Signal Process. 23(1), 148–169 (2009)CrossRefGoogle Scholar
  8. 8.
    Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)CrossRefGoogle Scholar
  9. 9.
    Nucera, F., Iacono, F.L., McFarland, D., Bergman, L., Vakakis, A.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313(1), 57–76 (2008)CrossRefGoogle Scholar
  10. 10.
    Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014)CrossRefGoogle Scholar
  11. 11.
    Anubi, O.M., Crane, C.: A new semiactive variable stiffness suspension system using combined skyhook and nonlinear energy sink-based controllers. IEEE Trans. Control Syst. Technol. 23(3), 937–947 (2015)CrossRefGoogle Scholar
  12. 12.
    McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non Linear Mech. 40(6), 891–899 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299(4), 822–838 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2012)CrossRefGoogle Scholar
  15. 15.
    Sigalov, G., Gendelman, O., Al-Shudeifat, M., Manevitch, L., Vakakis, A., Bergman, L.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315(3), 732–745 (2008)CrossRefGoogle Scholar
  17. 17.
    Lamarque, C.H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Actamechanica 221(1–2), 175 (2011)MATHGoogle Scholar
  18. 18.
    Nucera, F., Vakakis, A.F., McFarland, D., Bergman, L., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)CrossRefMATHGoogle Scholar
  19. 19.
    Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non Linear Mech. 52, 96–109 (2013)CrossRefGoogle Scholar
  20. 20.
    Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2010)CrossRefGoogle Scholar
  21. 21.
    AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1), 014502 (2015)CrossRefGoogle Scholar
  22. 22.
    Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136(2), 021021 (2014)CrossRefGoogle Scholar
  23. 23.
    Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87(4), 2415–2433 (2016)CrossRefGoogle Scholar
  24. 24.
    Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gendelman, O., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)CrossRefGoogle Scholar
  26. 26.
    Gendelman, O., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51(1), 31–46 (2008)MATHGoogle Scholar
  27. 27.
    Starosvetsky, Y., Gendelman, O.: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Johnson, D.R., Thota, M., Semperlotti, F., Wang, K.: On achieving high and adaptable damping via a bistable oscillator. Smart Mater. Struct. 22(11), 115027 (2013)CrossRefGoogle Scholar
  29. 29.
    Gourdon, E., Lamarque, C.H.: Energy pumping with various nonlinear structures: numerical evidences. Nonlinear Dyn. 40(3), 281–307 (2005)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Savadkoohi, A.T., Manevitch, L.I., Lamarque, C.H.: Analysis of the transient behavior in a two dof nonlinear system. Chaos Solitons Fractals 44(6), 450–463 (2011)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Harne, R., Thota, M., Wang, K.: Bistable energy harvesting enhancement with an auxiliary linear oscillator. Smart Mater. Struct. 22(12), 125028 (2013)CrossRefGoogle Scholar
  32. 32.
    AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017)CrossRefGoogle Scholar
  34. 34.
    Harne, R., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRefGoogle Scholar
  35. 35.
    Manevitch, L., Sigalov, G., Romeo, F., Bergman, L., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4), 041011 (2014)CrossRefGoogle Scholar
  36. 36.
    Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dynam. 10(1), 011007 (2015)CrossRefGoogle Scholar
  37. 37.
    Romeo, F., Manevitch, L., Bergman, L., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos Interdiscip. J. Nonlinear Sci. 25(5), 053109 (2015)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017)CrossRefGoogle Scholar
  39. 39.
    Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016)CrossRefGoogle Scholar
  40. 40.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Berlin (2003)MATHGoogle Scholar
  41. 41.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)MATHGoogle Scholar
  42. 42.
    Starosvetsky, Y., Gendelman, O.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1), 234–256 (2008)CrossRefGoogle Scholar
  43. 43.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47(1), 285–309 (2007)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS-INSA-ISAE-Mines Albi-UPS, Institut Clément Ader (ICA)Université de ToulouseToulouseFrance

Personalised recommendations