Advertisement

Nonlinear Dynamics

, Volume 92, Issue 2, pp 395–413 | Cite as

Local discontinuous Galerkin method for distributed-order time and space-fractional convection–diffusion and Schrödinger-type equations

  • Tarek Aboelenen
Original Paper

Abstract

We develop a local discontinuous Galerkin finite element method for the distributed-order time and Riesz space-fractional convection–diffusion and Schrödinger-type equations. The stability of the presented schemes is proved and optimal order of convergence \(\mathcal {O}(h^{N+1}+(\Delta t)^{1+\frac{\theta }{2}}+\theta ^{2})\) for the Riesz space-fractional diffusion and Schrödinger-type equations with distributed order in time, an order of convergence of \(\mathcal {O}(h^{N+\frac{1}{2}}+(\Delta t)^{1+\frac{\theta }{2}}\) \(+\theta ^{2})\) is provided for the Riesz space-fractional convection–diffusion equations with distributed order in time where h, \(\theta \) and \(\Delta t\) are space step size, the distributed-order variables and the step sizes in time, respectively. Finally, the performed numerical examples confirm the optimal convergence order and illustrate the effectiveness of the method.

Keywords

Fractional convection–diffusion equations with distributed order in time Fractional Schrödinger-type equations with distributed order in time Local discontinuous Galerkin method Stability Optimal convergence 

References

  1. 1.
    Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Atanackovic, T., Budincevic, M., Pilipovic, S.: On a fractional distributed-order oscillator. J. Phys. A Math. Gen. 38, 6703 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independentII. Geophys. J. Int. 13, 529–539 (1967)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hartley, T.T., Lorenzo, C.F.: Fractional system identification: an approach using continuous order-distributions. NASA/TM-1999-209640 (1999)Google Scholar
  5. 5.
    Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Naghibolhosseini, M.: Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear Ph.D thesis, City University of New York, NY (2015)Google Scholar
  7. 7.
    Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, 223–234 (2003)Google Scholar
  8. 8.
    Sokolov, A.C.I., Klafter, J.: Distributed order fractional kinetics. Acta Phys. Pol. B 35, 1323–1341 (2004)Google Scholar
  9. 9.
    Caputo, M.: Elasticitàe Dissipazione. Zanichelli, Bologna (1969)Google Scholar
  10. 10.
    Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. Trans. R. Soc. A 371, 20120153 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bhrawy, A., Zaky, M.: Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn. 89, 1415–1432 (2017)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, New York (2011)zbMATHGoogle Scholar
  17. 17.
    Zeng, S., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun. Nonlinear Sci. Numer. Simul. 56, 34–48 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M.: On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization. Optik Int. J. Light Electron Opt. 130, 398–406 (2017)CrossRefGoogle Scholar
  19. 19.
    Yüzbaşı, Ş., Karaçayır, M.: An exponential galerkin method for solutions of hiv infection model of \({CD4}^{+}\) T-cells. Comput. Biol. Chem. 67, 205–212 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mahmoud, G.M., Abed-Elhameed, T.M., Ahmed, M.E.: Generalization of combination-combination synchronization of chaotic n-dimensional fractional-order dynamical systems. Nonlinear Dyn. 83, 1885–1893 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yüzbaşı, Ş., Karaçayır, M.: A galerkin-like approach to solve high-order integrodifferential equations with weakly singular kernel. Kuwait J. Sci. 43, 106–120 (2016)MathSciNetGoogle Scholar
  22. 22.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    El-Sayed, A., Gaber, M.: On the finite caputo and finite Riesz derivatives. Electron. J. Theor. Phys. 3, 81–95 (2006)Google Scholar
  24. 24.
    Muslih, S.I., Agrawal, O.P.: Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49, 270–275 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Cockburn, B., Dawson, C.: Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Comput. Geosci. 6, 505–522 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56, 159–184 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32, 906–925 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845–1864 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52, 405–423 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Aboelenen, T.: A direct discontinuous Galerkin method for fractional convection-diffusion and Schrödinger type equations. arXiv:1708.04546 (2017)
  36. 36.
    Aboelenen, T., El-Hawary, H.: A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn–Hilliard equation. Comput. Math. Appl. 73, 1197–1217 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Aboelenen, T.: A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul. 54, 428–452 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993). https://books.google.co.in/books?id=MOp_QgAACAAJ
  39. 39.
    Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations (North-Holland Mathematics Studies), vol. 204. Elsevier, New York (2006)Google Scholar
  41. 41.
    Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ciarlet, P.G.: Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  43. 43.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsAssiut UniversityAssiutEgypt

Personalised recommendations