Nonlinear Dynamics

, Volume 92, Issue 2, pp 373–394 | Cite as

Hidden attractors in a new complex generalised Lorenz hyperchaotic system, its synchronisation using adaptive contraction theory, circuit validation and application

Original Paper
  • 179 Downloads

Abstract

Objectives of the paper are (1) to design two new real and complex no equilibrium point hyperchaotic systems, (2) to design synchronisation technique for the new systems using the contraction theory and (3) to validate the results by using circuit realisation. First a new no equilibrium point hyperchaotic system is developed using a 3-D generalised Lorenz system; then using the new system a new complex no equilibrium point hyperchaotic system is reported. Both the new systems have hidden chaotic attractors. Various dynamical behaviours are observed in the new systems like chaotic, periodic, quasi-periodic and hyperchaotic. Both the systems have inverse crisis route to chaos with the variation of parameter a and crisis route to chaos with the variation of parameters \(b,\ c\) and d. These phenomena along with hidden attractors in a complex hyperchaotic system are not seen in the literature. Synchronisation between the identical new hyperchaotic systems is achieved using the contraction theory. Further the synchronisation between the identical new complex hyperchaotic systems is achieved using adaptive contraction theory. The proposed synchronisation strategies are validated using the MATLAB simulation and circuit implementation results. Further, an application of the proposed system is shown by transmitting and receiving an audio signal.

Keywords

New hyperchaotic system Hidden attractors Contraction theory Complex hyperchaotic system Synchronisation of hyperchaotic system 

References

  1. 1.
    Wei, Z., Pham, V.-T., Kapitaniak, T., Wang, Z.: Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors. Nonlinear Dyn. 85(3), 1635–1650 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Wang, H., Ye, J., Miao, Z.H., Jonckheere, E.A.: Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication. Trans. Inst. Meas. Control (in press) 1–11 (2016).  https://doi.org/10.1177/0142331216678311
  3. 3.
    Wang, J., Zhou, W., Zhou, X.: Chaos control of pulse-disturbed permanent magnet synchronous motor with uncertain parameters. Trans. Inst. Meas. Control 38(7), 876–883 (2016)CrossRefGoogle Scholar
  4. 4.
    Wei, Q., Wang, X., Xiao-peng, H.: Adaptive hybrid complex projective synchronization of chaotic complex system. Trans. Inst. Meas. Control 36(8), 1093–1097 (2014)CrossRefGoogle Scholar
  5. 5.
    Singh, J.P., Roy, B.K.: The nature of Lyapunov exponents is \((+, +, -, - )\). Is it a hyperchaotic system. Chaos Solitons Fractals 92, 73–85 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D 241(18), 1482–1486 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(01), 1130002–1130071 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366(3), 217–222 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Guomao, X., Chen, S.: Hybrid synchronization of a Chen hyper-chaotic system with two simple linear feedback controllers. Appl. Math. 4, 13–17 (2013)Google Scholar
  11. 11.
    Chen, A., Lü, J., Lü, J., Simin, Y.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006)CrossRefGoogle Scholar
  12. 12.
    Singh, P.P., Singh, J.P., Roy, B.K.: Synchronization and anti-synchronization of Lü and Bhalekar-Gejji chaotic systems using nonlinear active control. Chaos Solitons Fractals 69, 31–39 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Singh, J.P., Roy, B.K.: Analysis of an one equilibrium novel hyperchaotic system and its circuit validation. Int. J. Control Theory Appl. 8(3), 1015–1023 (2015)Google Scholar
  14. 14.
    Singh, J.P., Roy, B.K.: Crisis and inverse crisis route to chaos in a new 3-D chaotic system with saddle, saddle foci and stable node foci nature of equilibria. Optik 127(24), 11982–12002 (2016)CrossRefGoogle Scholar
  15. 15.
    Jafari, S., Sprott, J.C., Mohammad, S., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377(9), 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jafari, S., Pham, V.-T., Kapitaniak, T.: Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int. J. Bifurc. Chaos 26(2), 1–6 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a modifed Lorenz-Steno system with only one stable equilibrium. Int. J. Bifurc. Chaos 24(10), 1450127 (2014)CrossRefMATHGoogle Scholar
  18. 18.
    Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic ows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)CrossRefMATHGoogle Scholar
  19. 19.
    Wei, Z., Pei, Y., Zhang, W., Yao, M.: Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system. Nonlinear Dyn. 82(1–2), 131–141 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Li, Q., Zeng, H., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79(4), 2295–2308 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chen, Y., Yang, Q.: A new Lorenz-type hyperchaotic system with a curve of equilibria. Math. Comput. Simul. 112, 40–55 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pham, V.T., Jafari, S., Volos, C., Kapitaniak, T.: A gallery of chaotic systems with an infinite number of equilibrium points. Chaos Solitons Fractals 93, 58–63 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kingni, S.T., Pham, V.-T., Jafari, S., Kol, G.R., Woafo, P.: Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional order form. Circuits Syst. Signal Process. 35(6), 1807–1813 (2016)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., Zaretskiy, A.M.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)CrossRefGoogle Scholar
  26. 26.
    Kiseleva, M.A., Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in electromechanical systems with and without equilibria. IFAC Pap. Online 49(14), 051–055 (2016)CrossRefGoogle Scholar
  27. 27.
    Jafari, S., Pham, K.T.: VietThanh: multi-scroll chaotic attractor obtained from a simple 3D system without equilibrium. Int. J. Bifurc. Chaos 26(02), 1650031–1650037 (2015)CrossRefGoogle Scholar
  28. 28.
    Kiseleva, M., Natalya, K., Nikolay, K., Gennady, L.: Hidden oscillations in electromechanical systems. In: Irschik, H., Belyaev, A., Krommer, M. (eds.) Dynamics and Control of Advanced Structures and Machines, pp. 119–124. Springer, Berlin (2017)CrossRefGoogle Scholar
  29. 29.
    Sajad Pham, V.T., Vaidyanathan, S., Volos, C.K., Jafari, S.: Hidden attractors in a chaotic system with an exponential nonlinear term. Eur. Phys. J. Special Topics 224(8), 507–151 (2015)Google Scholar
  30. 30.
    Tahir, F.R., Jafari, S., Pham, V.-T., Volos, C., Wang, X.: A novel no-equilibrium chaotic system with multiwing butter yattractors. Int. J. Bifurc. Chaos 25(04), 1550056 (2015)CrossRefGoogle Scholar
  31. 31.
    Lin, Y., Wang, C., He, H., Zhou, L.L.: A novel four-wing non-equilibrium chaotic system and its circuit implementation. Pramana 86(4), 801–807 (2016)CrossRefGoogle Scholar
  32. 32.
    Pham, V.-T., Vaidyanathan, S., Volos, C., Jafari, S., Kingni, S.T.: A non-equilibrium hyperchaotic system with a cubic nonlinear term. Optik 127(6), 3259–3265 (2016)CrossRefGoogle Scholar
  33. 33.
    Vaidyanathan, S., Volos, C.K., Pham, V.T.: Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J. Eng. Sci. Technol. Rev. 8(2), 232–244 (2015)Google Scholar
  34. 34.
    Pham, V.T., Volos, C., Jafari, S., Wang, X.: Generating a novel hyperchaotic system out of equilibrium. Optoelectron. Adv. Mater. Rapid Commun. 8(5–6), 535–539 (2014)Google Scholar
  35. 35.
    Li, C., Sprott, J.C., Thio, W., Zhu, H.: A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express. Briefs 61(12), 977–981 (2014)Google Scholar
  36. 36.
    Pham, V.-T., Volos, C., Gambuzza, L.V.: A memristive hyperchaotic system without equilibrium. Sci. World J. 1–9, 2014 (2014)Google Scholar
  37. 37.
    Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24(03), 1450034–1450040 (2014)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Gibbon, J.D., McGuinness, M.J.: The real and complex Lorenz equations in rotating fluids and lasers. Physica D 5(1), 108–122 (1982)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    McGuinness, M.J.: The fractal dimension of the Lorenz attractor. Phys. Lett. A 99(1), 5–9 (1983)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhou, T., Tang, Y.U.N.: Complex dynamical behaviors of the chaotic Chen’s system. Int. J. Bifurc. Chaos 13(9), 2561–2574 (2003)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Mahmoud, G.M., Bountis, T., Abdel-Latif, G.M.: Chaos synchronization of two different chaotic complex Chen and LU systems. Nonlinear Dyn. 55(1–2), 43–53 (2009)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Mahmoud, G.M., Aly, S.A., Farghaly, A.A.: On chaos synchronization of a complex two coupled dynamos system. Chaos Solitons Fractals 33(1), 178–187 (2007)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Yadav, V.K., Srikanth, N., Das, S.: Dual function projective synchronization of fractional order complex chaotic systems. Optik 127, 10527–10538 (2016)CrossRefGoogle Scholar
  45. 45.
    Zhaoyan, W., Duan, J., Xinchu, F.: Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn. 69(3), 771–779 (2011)MathSciNetMATHGoogle Scholar
  46. 46.
    Rajagopal, K., Guessas, L., Vaidyanathan, S., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control. Alex. Eng. J. 2017, 1–14 (2017)Google Scholar
  47. 47.
    Liu, J., Liu, S., Zhang, F.: A novel four-wing hyperchaotic complex system and its complex modified hybrid projective synchronization with different dimensions. Abstract Appl. Anal. 2014(3), 1–16 (2014)MathSciNetGoogle Scholar
  48. 48.
    Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Moghtadaei, M., Golpayegani, M.R.H.: Complex dynamic behaviors of the complex Lorenz system. Sci. Iran. 19(3), 733–738 (2012)CrossRefGoogle Scholar
  50. 50.
    Toronov, V.Y., Derbov, V.L.: Boundedness of attractors in the complex Lorenz model. Phys. Rev. E 55(3), 3689–3692 (1997)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Mahmoud, G.M., Ahmed, M.E.: Modified projective synchronization and control of complex Chen and Lü systems. J. Vib. Control 17(8), 1184–1194 (2011)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Mahmoud, G.M., Mahmoud, E.E.: Modified projective lag synchronization of two nonidentical hyperchaotic complex nonlinear systems. Int. J. Bifurc. Chaos 21(08), 2369–2379 (2011)CrossRefMATHGoogle Scholar
  53. 53.
    Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: A hyperchaotic complex chen system and its dynamics. Int. J. Appl. Math. Stat. 12(07), 90–100 (2007)MathSciNetMATHGoogle Scholar
  54. 54.
    Liu, S., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal. Real World Appl. 12(6), 3046–3055 (2011)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Farghaly, A.A.M.: Generating a complex form of chaotic Pan system and its behavior. Appl. Math. Inf. Sci. 2557(5), 2553–2557 (2015)MathSciNetGoogle Scholar
  56. 56.
    Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. Math. Comput. Simul. 80(12), 2286–2296 (2010)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dyn. 61(1–2), 141–152 (2010)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366(12), 1–101 (2002)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Wei, J., Zhang, Y., Sun, M., Geng, B.: Adaptive neural synchronization control of chaotic systems with unknown control directions under input saturation. Optik 132, 249–261 (2017)CrossRefGoogle Scholar
  60. 60.
    Shi, K., Wang, B., Yang, L., Jian, S., Bi, J.: Takagi Sugeno fuzzy generalized predictive control for a class of nonlinear systems. Nonlinear Dyn. 89(1), 169–177 (2017)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Sharma, B.B., Kar, I.N.: Chaotic synchronization and secure communication using contraction theory. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) Pattern Recognition and Machine Intelligence, pp. 549–554. Springer, Berlin (2009)CrossRefGoogle Scholar
  62. 62.
    Zhang, X., Cui, B.: Synchronization of Lurie system based on contraction analysis. Appl. Math. Comput. 223, 180–190 (2013)MathSciNetMATHGoogle Scholar
  63. 63.
    Sharma, B.B., Kar, I.N.: Observer-based synchronization scheme for a class of chaotic systems using contraction theory. Nonlinear Dyn. 63(3), 429–445 (2011)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Xiong, X., Wang, J., Zhou, T.: Contraction principle and its applications in synchronization of nonlinearly coupled systems. Chaos Solitons Fractals 32(3), 1147–1153 (2007)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Rayguru, M.M., Kar, I.N.: Convergence analysis of high gain disturbance observer based backstepping control : a contraction theory approach. In: IEEE ndian Control Conference (ICC), Jan. 4–6, pp. 72–77. Guwahati, India (2017)Google Scholar
  66. 66.
    Maree, J.P., Imsland, L., Jouffroy, J.: A convergence result for the unscented Kalman-Bucy filter using contraction theory. Int. J. Syst. Sci. 47(8), 1816–1827 (2016)CrossRefMATHGoogle Scholar
  67. 67.
    Silva, J., Sequeira, J., Santos, C.: A robot control architecture supported on contraction theory. Int. J. Syst. Sci. 48(1), 209–224 (2016)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Wang, W., Slotine, J.-J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92(1), 38–53 (2005)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Lohmiller, W., Slotine, J.-J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Zhao, T., Li, H., Cai, Q., Cao, Q.: Passive Control of Lorenz Chaos System with Nonlinear Virtual Contraction Analysis, vol. 405, pp. 427–436. Springer, Berlin (2016)Google Scholar
  71. 71.
    Sprott, J.C.: A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos 21(9), 2391–2394 (2011)CrossRefGoogle Scholar
  72. 72.
    Mahmoud, G.M.: AL-Kashif, M.A., Aly, S.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Mod. Phys. C 18(02), 253–265 (2007)CrossRefGoogle Scholar
  73. 73.
    Jouffroy, J., Fossen, T.I.: A tutorial on incremental stability analysis using contraction theory. Model. Identif. Control 31(3), 93–106 (2010)CrossRefGoogle Scholar
  74. 74.
    Jouffroy, J., Slotine, J.-J.E.: Methodological remarks on contraction theory. In: 43rd IEEE Conference on Decision and Control (CDC), vol. 3, pp. 2537–2543 (2004)Google Scholar
  75. 75.
    Lohmiller, W., Slotine, J.-J.E.: Control system design for mechanical systems using contraction theory. IEEE Trans. Autom. Control 45(5), 984–989 (2000)MathSciNetCrossRefMATHGoogle Scholar
  76. 76.
    Lohmiller, W.S.: Contraction Analysis of Nonlinear Systems Automatica 34(6), 683–696 (1998)MathSciNetGoogle Scholar
  77. 77.
    Yang, Q., Wei, Z., Chen, G.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurc. Chaos 20(04), 1061–1083 (2010)MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion: homoclinic orbits, and self-excited and hidden attractors. Eur. Phys. J. Spec. Topics 224(8), 1421–1458 (2015)CrossRefGoogle Scholar
  79. 79.
    Yang, Q., Chen, G.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18(5), 1393–1414 (2008)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Nik, H.S., Golchaman, M.: Chaos control of a bounded 4D chaotic system. Neural Comput. Appl. 25, 683–692 (2014)CrossRefGoogle Scholar
  81. 81.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Sabarathinam, S., Thamilmaran, K., Borkowski, L., Perlikowski, P., Brzeski, P., Stefanski, A., Kapitaniak, T.: Transient chaos in two coupled, dissipatively perturbed Hamiltonian Duffing oscillators. Commun. Nonlinear Sci. Numer. Simul. 18, 3098–3107 (2013)MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Stenflo, L.: Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys. Scr. 53(1), 83–84 (1996)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Singh, J.P., Roy, B.K.: The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviou. Nonlinear Dyn. 89(3), 1845–1862 (2017)CrossRefGoogle Scholar
  86. 86.
    Singh, J.P., Lochan, K., Kuznetsov, N.V., Roy, B.K.: Coexistence of single- and multi-scroll chaotic orbits in a single-link flexible joint robot manipulator with stable spiral and index-4 spiral repellor types of equilibria. Nonlinear Dyn. 90, 1277–1299 (2017)CrossRefGoogle Scholar
  87. 87.
    Ren, H.-P., Bai, C., Kong, Q., Baptista, M.S., Grebogi, C.: A chaotic spread spectrum system for underwater acoustic communication. Physica A 478, 77–92 (2017)CrossRefGoogle Scholar
  88. 88.
    Varan, M., Yaln, F., Uyaroglu, Y.: Synchronizations and secure communication applications of a third degree Malasoma system with chaotic ow. Optik 127(23), 11086–11093 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations