Advertisement

Nonlinear Dynamics

, Volume 92, Issue 2, pp 359–371 | Cite as

Adaptive robust control methodology for active roll control system with uncertainty

  • Hao Sun
  • Ye-Hwa Chen
  • Han Zhao
Original Paper

Abstract

The active roll control system (ARCS) can impose anti-roll moment quickly to prevent the vehicle rolling when the vehicle generates the roll tendency and effectively enhance the vehicle dynamic performance without sacrificing the ride comfort. In the dynamic model of the ARCS, the sprung mass of the vehicle is considered to be the uncertain parameter, which is (possibly) fast-varying. However, what we know about the uncertainty is just that it is bounded. Furthermore, the bound is unknown. The target roll angle is regarded as the constraint when the vehicle equipped with the ARCS is running under a given case. Taking the parameter uncertainty and possible initial condition deviation from the constraint into account, an adaptive robust control scheme based on the Udwadia and Kalaba’s approach is proposed to drive the ARCS to follow the pre-specified constraint approximately. The adaptive law is of leakage type which can adjust itself based on the tracking error. Numerical simulation shows that by using the adaptive robust control scheme, the error between the actual roll angle and the desired roll angle converges to zero quickly in 0.3 s from initial error 0.287 deg, and the final error is of the order of \(10^{-7}\). Thus, the control design renders the ARCS practically stable and achieves constraints following maneuvering.

Keywords

Active roll control system System uncertainty Initial condition deviation Adaptive robust control 

Notes

Acknowledgements

The research is supported by the China Postdoctoral Science Foundation (No. 2016M590563), the National Natural Science Foundation of China (No. 51505116), and the Fundamental Research Funds for the Central Universities (No. JZ2016HGTB0716).

References

  1. 1.
    Cronje, P.H., Els, P.S.: Improving off-road vehicle handling using an active anti-roll bar. J. Terramechanics 47, 179–189 (2010)CrossRefGoogle Scholar
  2. 2.
    Gosselin-Brisson, S., Bouazara, M., Richard, M.J.: Design of an active anti-roll bar for off-road vehicles. Shock Vib. 16, 155–174 (2009)CrossRefGoogle Scholar
  3. 3.
    Zulkarnain, N., Imaduddin, F., Zamzuri, H., et al.: Application of an active anti-roll bar system for enhancing vehicle ride and handling. In: IEEE Colloquium on Humanities, Science and Engineering (CHUSER), pp. 260–265 (2012)Google Scholar
  4. 4.
    Konik, D.: Development of the dynamic drive for the new 7 series of the BMW group. Int. J. Veh. Des. 28, 131–149 (2002)CrossRefGoogle Scholar
  5. 5.
    Kim, S., Park, K., Song, H.J., et al.: Development of control logic for hydraulic active roll control system. Int. J. Automot. Technol. 13, 87–95 (2012)CrossRefGoogle Scholar
  6. 6.
    Sename, O., Dugard, L., Gaspar, P.: Active anti-roll bar control using electronic servo valve hydraulic damper on single unit heavy vehicle. IFAC Pap. Line 49, 418–425 (2016)Google Scholar
  7. 7.
    Vu, V.T., Sename, O., Dugard, L., et al.: Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators. Veh. Syst. Dyn. 55, 1405–1429 (2017)CrossRefGoogle Scholar
  8. 8.
    Vu, V.T., Sename, O., Dugard, L., et al.: \(H_\infty \) active anti-roll bar control to prevent rollover of heavy vehicles: a robustness analysis. IFAC Pap. Line 49, 99–104 (2016)CrossRefGoogle Scholar
  9. 9.
    Strassberger, M., Guldner, J.: BMW’s dynamic drive: an active stabilizer bar system. IEEE Control Syst. 24, 28–29 (2004)CrossRefGoogle Scholar
  10. 10.
    Kim, H.J., Lee, C.R.: Hybrid roll control using electric ARC system considering limited bandwidth of actuating module. Int. J. Automot. Technol. 3, 123–128 (2002)Google Scholar
  11. 11.
    Ohta, Y., Kato, H., Yamada, D., et al.: Development of an electric active stabilizer system based on robust design. SAE Technical Paper, 2006-01-0758 (2006)Google Scholar
  12. 12.
    Buma, S., Ookuma, Y., Taneda, A., et al.: Design and development of electric active stabilizer suspension system. J. Syst. Des. Dyn. 4, 61–76 (2010)Google Scholar
  13. 13.
    Jeon, K., Hwang, H., Choi, S., et al.: Development of an electric active rollcontrol (ARC) algorithm for a SUV. Int. J. Automot. Technol. 13, 247–253 (2012)CrossRefGoogle Scholar
  14. 14.
    Muniandy, V., Samin, P.M., Jamaluddin, H.: Application of a self-tuning fuzzy PIPD controller in an active anti-roll bar system for a passenger car. Veh. Syst. Dyn. 53, 1641–1666 (2015)CrossRefGoogle Scholar
  15. 15.
    Kong, Z., Pi, D., Wang, X., et al.: Design and evaluation of a hierarchical control algorithm for an electric active stabilizer bar system. Stroj. vestn. J. Mech. Eng. 62, 565–576 (2016)CrossRefGoogle Scholar
  16. 16.
    Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. 439, 407–410 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Udwadia, F.E., Kalaba, R.E.: Explicit equations of motion for mechanical systems with non-ideal constraints. J. Appl. Mech. 68, 462–467 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Udwadia, F.E.: On constrained motion. Appl. Math. Comput. 164, 313–320 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-linear Mech. 37, 1079–1090 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Udwadia, F.E., Kalaba, R.E.: What is the general form of the explicit equations of motion for constrained mechanical systems? J. Appl. Mech. 69, 335–339 (2002)Google Scholar
  22. 22.
    Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 2097–2117 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann Press, London (1965)zbMATHGoogle Scholar
  24. 24.
    Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)CrossRefzbMATHGoogle Scholar
  25. 25.
    Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15, 369–389 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  27. 27.
    Chen, Y.H., Zhang, X.R.: Adaptive robust approximate constraint-following control for mechanical systems. J. Frankl. Inst. 347, 69–86 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Valipour, M., Montazar, A.A.: An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. Am. J. Sci. Res. 69, 128–142 (2012)Google Scholar
  29. 29.
    Viero, D.P., Valipour, M.: Modeling anisotropy in free-surface overland and shallow inundation flows. Adv. Water Resour. 104, 1–14 (2017)CrossRefGoogle Scholar
  30. 30.
    Valipour, M.: Ability of Box–Jenkins models to estimate of reference potential evapotranspiration (a case study: Mehrabad Synoptic Station, Tehran, Iran). IOSR J. Agric. Vet. Sci. 1, 1–11 (2012)CrossRefGoogle Scholar
  31. 31.
    Valipour, M.: Application of new mass transfer formulae for computation of evapotranspiration. J. Appl. Water Eng. Res. 2, 33–46 (2014)CrossRefGoogle Scholar
  32. 32.
    Valipour, M., Sefidkouhi, M.A.G., Raeini, M.: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 180, 50–60 (2017)CrossRefGoogle Scholar
  33. 33.
    Valipour, M.: How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6, 1–9 (2016)CrossRefGoogle Scholar
  34. 34.
    Liu, C., Sun, Z., Shi, K., et al.: Robust non-fragile state feedback attitude control for uncertain spacecraft with input saturation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. (2016).  https://doi.org/10.1177/0954410016679194

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.The George W Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations