Nonlinear Dynamics

, Volume 92, Issue 2, pp 351–358 | Cite as

A new lattice hydrodynamic model with the consideration of flux change rate effect

Original Paper
  • 78 Downloads

Abstract

A new lattice hydrodynamic traffic flow model is proposed by considering the preceding lattice site’s flux change rate effect. Using linear stability theory, stability condition of the presented model is obtained. It is shown that the stability region significantly enlarges as the flux change rate effect increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. To verify the theoretical findings, numerical simulation is conducted which confirms that preceding lattice site’s flux change rate can improve the stability of traffic flow effectively.

Keywords

Traffic flow Lattice hydrodynamic model MKdV equation Flux change rate 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61573075), the National Key R&D Program(Grant No.2016YFB0100904), the Major Innovation Project for the Key Industrial Generic Technologies of Chongqing (Grant No. cstc2015zdcy-ztzx60002), the Fundamental Research Funds for the Central Universities (Grant No. 106112014CDJZR178801), the Natural Science Foundation of Chongqing Science and Technology Commission (Grant No. cstc2016jcyjA2009), the China Postdoctoral Science Foundation Funded Project (Grant No. 2015M572450) and the Foundation for High-level Talents of Chongqing University of Art and Sciences (No. 2017RJD13).

References

  1. 1.
    Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F 2(4), 181–196 (1999)CrossRefGoogle Scholar
  2. 2.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hoogendoorn, S.P., Bovy, P.H.: State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part I J. Sys. Control Eng. 215(4), 283–303 (2001)CrossRefGoogle Scholar
  4. 4.
    Schadschneider, A.: Traffic flow: a statistical physics point of view. Phys. A: Stat. Mech. Appl. 313(1), 153–187 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Helbing, D., Hennecke, A., Treiber, M.: Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett. 82(21), 4360 (1999)CrossRefGoogle Scholar
  6. 6.
    Nagatani, T.: Jamming transitions and the modified Kortewegde Vries equation in a two-lane traffic flow. Phys. A: Stat. Mech. Appl. 265(1), 297–310 (1999)CrossRefGoogle Scholar
  7. 7.
    Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A: Stat. Mech. Appl. 261(3), 599–607 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Phys. A: Stat. Mech. Appl. 264(3), 581–592 (1999)CrossRefGoogle Scholar
  9. 9.
    Wang, T., Gao, Z., Zhang, J., Zhao, X.: A new lattice hydrodynamic model for two-lane traffic with the consideration of density difference effect. Nonlinear Dyn. 75, 27–34 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tian, J.F., Yuan, Z.Z., Jia, B., Fan, H.Q.: Phase transitions and the Korteweg-de Vries equation in the density difference lattice hydrodynamic model of traffic flow. Int. J. Mod. Phys. C 24(03), 1350016 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gupta, A.K., Redhu, P.: Analysis of a modified two-lane lattice model by considering the density difference effect. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1600–1610 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gupta, A.K., Redhu, P.: Jamming transition of a two-dimensional traffic dynamics with consideration of optimal current difference. Phys. Lett. A 377(34), 2027–2033 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Peng, G.H., Nie, F.Y., Cao, B.F., Liu, C.Q.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 18111815 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers’ physical delay. Nonlinear Dyn. 71, 531537 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Peng, G.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cheng, R.J., Li, Z.P., Zheng, P.J., Ge, H.X.: The theoretical analysis of the anticipation lattice models for traffic flow. Nonlinear Dyn. 76, 725731 (2014)MathSciNetGoogle Scholar
  17. 17.
    Sharma, S.: Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior. Phys. A: Stat. Mech. Appl. 421, 401–411 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Sun, D.H., Liu, W.N., Zhao, M., Cheng, S.L.: Analysis of two-lane lattice hydrodynamic model with consideration of drivers’ characteristics. Phys. A: Stat. Mech. Appl. 422, 16–24 (2015)CrossRefGoogle Scholar
  19. 19.
    Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. Phys. Lett. A 375(30), 2823–2827 (2011)CrossRefMATHGoogle Scholar
  20. 20.
    Tang, T.Q., Huang, H.J., Xue, Y.: Improved two-lane traffic flow lattice model. Acta Phys. Sin. 55(8), 4026–31 (2006)Google Scholar
  21. 21.
    Zhang, M., Sun, D.H., Tian, C.: An extended two-lane traffic flow lattice model with driver’s delay time. Nonlinear Dyn. 77, 839847 (2014)MathSciNetGoogle Scholar
  22. 22.
    Gupta, A.K., Sharma, S., Redhu, P.: Effect of multi-phase optimal velocity function on jamming transition in a lattice hydrodynamic model with passing. Nonlinear Dyn. 80, 10911108 (2015)CrossRefGoogle Scholar
  23. 23.
    Zhou, J., Shi, Z.K., Wang, C.P.: Lattice hydrodynamic model for two-lane traffic flow on curved road. Nonlinear Dyn. 85, 1423–1443 (2016)CrossRefMATHGoogle Scholar
  24. 24.
    Li, Y., Song, Y., Yang, B., Zheng, T., Feng, H., Li, Y.: A new lattice hydrodynamic model considering the effects of bilateral gaps on vehicular traffic flow. Nonlinear Dyn. 87, 1–11 (2017)CrossRefMATHGoogle Scholar
  25. 25.
    Jin, Y.D., Zhou, J., Shi, Z.K., Zhang, H.L., Wang, C.P.: Lattice hydrodynamic model for traffic flow on curved road with passing. Nonlinear Dyn (2017).  https://doi.org/10.1007/s11071-017-3439-8
  26. 26.
    Kaur, R., Sharma, S.: Analysis of driver’s characteristics on a curved road in a lattice model. Phys. A: Stat. Mech. Appl. 471, 59–67 (2017)CrossRefGoogle Scholar
  27. 27.
    Redhu, P., Gupta, A.K.: Delayed-feedback control in a Lattice hydrodynamic model. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 263–270 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ge, H.X., Cui, Y., Zhu, K.Q., Cheng, R.J.: The control method for the lattice hydrodynamic model. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 903–908 (2015)CrossRefGoogle Scholar
  29. 29.
    Wang, Y., Cheng, R., Ge, H.: A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference. Phys. A: Stat. Mech. Appl. 479, 478–484 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xue, Y., Guo, Y., Shi, Y., Lv, L.Z., He, H.D.: Feedback control for the lattice hydrodynamics model with drivers reaction time. Nonlinear Dyn. 88(1), 145–156 (2017)CrossRefGoogle Scholar
  31. 31.
    Cheng, R.J., Ge, H.X., Wang, J.F.: An extended continuum model accounting for the drivers timid and aggressive attributions. Phys. Lett. A 381(15), 1302–1312 (2017)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Gupta, A.K., Redhu, P.: Analyses of the drivers anticipation effect in a new lattice hydrodynamic traffic flow model with passing. Nonlinear Dyn. 76(2), 1001–1011 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Redhu, P., Gupta, A.K.: The role of passing in a two-dimensional network. Nonlinear Dyn. 86(1), 389–399 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, T., Zhang, J., Gao, Z., Zhang, W., Li, S.: Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp. Nonlinear Dyn. 88(2), 1345–1359 (2017)CrossRefGoogle Scholar
  35. 35.
    Redhu, P., Gupta, A.K.: Phase transition in a two-dimensional triangular flow with consideration of optimal current difference effect. Nonlinear Dyn. 78(2), 957–968 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Willke, T.L., Tientrakool, P., Maxemchuk, N.F.: A survey of inter-vehicle communication protocols and their applications. IEEE Commun. Surv. Tutor. 11(2), 3–20 (2009)CrossRefGoogle Scholar
  37. 37.
    Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Kortewegde Vries equation in a cooperative driving system. Phys. Rev. E 71(6), 066119 (2005)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wang, T., Gao, Z., Zhang, J.: Stabilization effect of multiple density difference in the lattice hydrodynamic model. Nonlinear Dyn. 73, 2197–2205 (2013)CrossRefGoogle Scholar
  39. 39.
    Seiler, P., Pant, A., Hedrick, K.: Disturbance propagation in vehicle strings. IEEE Trans. Autom. Control. 49(10), 1835–1842 (2004)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Cook, P.A.: Conditions for string stability. Syst. Control Lett. 54(10), 991–998 (2005)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kinkantikink solitons in car-following models. Phys. A: Stat. Mech. Appl. 357(3), 466–476 (2005)CrossRefGoogle Scholar
  42. 42.
    Song, H., Ge, H.X., Chen, F.Z., Cheng, R.J.: TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference. Nonlinear Dyn. 87(3), 1809–1817 (2017)CrossRefGoogle Scholar
  43. 43.
    Liu, F.X., Cheng, R.J., Ge, H.X., Lo, S.M.: An improved car-following model considering the influence of optimal velocity for leading vehicle. Nonlinear Dyn. 85(3), 1469–1478 (2016)CrossRefGoogle Scholar
  44. 44.
    Bando, M., Hasebe, K.: NakayamaA., Shibata A., Sugiyama Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of EducationChongqing UniversityChongqingChina
  2. 2.College of AutomationChongqing UniversityChongqingChina
  3. 3.College of Mechanical and Electrical EngineeringChongqing University of Arts and SciencesChongqingChina
  4. 4.College of Computer and Information ScienceSouthwest UniversityChongqingChina

Personalised recommendations