Nonlinear Dynamics

, Volume 92, Issue 2, pp 325–349 | Cite as

Nonlinear vibration isolation of a viscoelastic beam

Original Paper
  • 233 Downloads

Abstract

In this paper, the transmissibility of a viscoelastic beam supported by vertical springs is defined by proposing a new vertical elastic support boundary. By contrasting with the viscoelastic beam with rigid vertical supports and the rigid rod with vertical elastic support ends, the necessity of the transmissibility of an elastic structure with vertical elastic supports is proved. In order to approximately solve the steady-state responses of the nonlinear transverse vibration of the viscoelastic beam under periodic excitation, the harmonic balance method in conjunction with the pseudo arc-length method is adopted. The numerical results are calculated to confirm the approximate analytic results. The comparison between the rigid rod and the elastic beam shows that neglecting the bending vibration of the structures will underestimate the frequency range in which the elastic support produces an effective vibration isolation. On the other hand, the comparison between the rigid support and the spring support demonstrates that ignoring the elasticity of the support ends will create a false understanding of the force transmission of elastic structures. In general, this paper presents the necessity of studying the force transmission of elastic structures with elastic supports. Moreover, this paper will become the beginning of the study of the vibration isolation of the elastic structure.

Keywords

Nonlinear vibration Elastic beam Elastic support Isolation Transmissibility 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 11772181, 11422214, 11372171), the State Key Program of the National Natural Science Foundation of China (Grant No. 11232009), and Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-09-E00019).

References

  1. 1.
    Hoque, M.E., Mizuno, T., Ishino, Y., Takasaki, M.: A modified zero-power control and its application to vibration isolation system. J. Vib. Control 18(12), 1788–1797 (2012)CrossRefGoogle Scholar
  2. 2.
    Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)CrossRefGoogle Scholar
  3. 3.
    Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014)CrossRefGoogle Scholar
  4. 4.
    Shaw, A.D., Neild, S.A., Friswell, M.I.: Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. J. Sound Vib. 339, 84–98 (2015)CrossRefGoogle Scholar
  5. 5.
    Lu, Z.Q., Chen, L.Q., Brennan, M.J., Yang, T.J., Ding, H., Liu, Z.G.: Stochastic resonance in a nonlinear mechanical vibration isolation system. J. Sound Vib. 370, 221–229 (2016)CrossRefGoogle Scholar
  6. 6.
    Hao, Z.F., Cao, Q.J., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87(2), 987–1014 (2017)CrossRefGoogle Scholar
  7. 7.
    Zhang, J.R., Guo, Z.X., Zhang, Y., Tang, L., Guan, X.: Inner structural vibration isolation method for a single control moment gyroscope. J. Sound Vib. 361, 78–98 (2016)CrossRefGoogle Scholar
  8. 8.
    Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems. J. Sound Vib. 323(1–2), 352–365 (2009)CrossRefGoogle Scholar
  9. 9.
    Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Laalej, H., Lang, Z.Q., Daley, S., Zazas, I., Billings, S.A., Tomlinson, G.R.: Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn. 69(1–2), 409–421 (2012)CrossRefGoogle Scholar
  11. 11.
    Shen, Y.J., Yang, S.P., Xing, H.J., Ma, H.X.: Design of single degree-of-freedom optimally passive vibration isolation system. J. Vib. Eng. Technol. 3(1), 25–36 (2015)Google Scholar
  12. 12.
    Jiang, J.F., Cao, D.Q., Chen, H.T., Zhao, K.: The vibration transmissibility of a single degree of freedom oscillator with nonlinear fractional order damping. Int. J. Syst. Sci. 48(11), 2379–2393 (2017)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yang, T., Cao, Q.J.: Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. J. Stat. Mech. Theory Exp. 2017(4), 043202 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRefGoogle Scholar
  15. 15.
    El-Khoury, O., Adeli, H.: Recent advances on vibration control of structures under dynamic loading. Arch. Comput. Method Eng. 20(4), 353–360 (2013)CrossRefGoogle Scholar
  16. 16.
    Fulcher, B.A., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136(3), 031009 (2014)CrossRefGoogle Scholar
  17. 17.
    Li, Y.L., Xu, D.L.: Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int. J. Mech. Sci. 126, 186–195 (2017)CrossRefGoogle Scholar
  18. 18.
    Wang, X.L., Zhou, J.X., Xu, D.L., Ouyang, H.J., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87(1), 633–646 (2017)CrossRefGoogle Scholar
  19. 19.
    Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017)CrossRefGoogle Scholar
  20. 20.
    Niu, F., Meng, L.S., Wu, W.J., Sun, J.G., Su, W.H., Meng, G., Rao, Z.S.: Recent advances in quasi-zero-stiffness vibration isolation systems. Appl. Mech. Mater. 397–400, 295–303 (2013)CrossRefGoogle Scholar
  21. 21.
    Liu, C.C., Jing, X.J., Daley, S., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015)CrossRefGoogle Scholar
  22. 22.
    Somnay, R., Ibrahim, R.A., Banasik, R.C.: Nonlinear dynamics of a sliding beam on two supports and its efficacy as a non-traditional isolator. J Vib. Control 12(7), 685–712 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Ibrahim, R.A., Somnay, R.: Nonlinear dynamic analysis of an elastic beam isolator sliding on frictional supports. J. Sound Vib. 308(3–5), 735–757 (2007)CrossRefGoogle Scholar
  24. 24.
    Shaska, K., Ibrahim, R.A., Gibson, R.F.: Influence of excitation amplitude on the characteristics of nonlinear butyl rubber isolators. Nonlinear Dyn. 47(1–3), 83–104 (2007)MATHGoogle Scholar
  25. 25.
    Jin, J.D., Yang, X.D., Zhang, Y.F.: Stability and natural characteristics of a supported beam. Prod. Des. Manuf. 338, 467–472 (2011)Google Scholar
  26. 26.
    Zhang, T., Ouyang, H., Zhang, Y.O., Lv, B.L.: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 40(17–18), 7880–7900 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, Y.X., Sun, L.Z.: Transverse vibration of an undamped elastically connected double-beam system with arbitrary boundary conditions. J. Eng. Mech. 142(2), 04015070 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, Y.R., Fang, Z.W.: Vibrations in an elastic beam with nonlinear supports at both ends. J. Appl. Mech. Tech. Phys. 56(2), 337–346 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wattanasakulpong, N., Chaikittiratana, A.: Adomian-modified decomposition method for large-amplitude vibration analysis of stepped beams with elastic boundary conditions. Mech. Based Des. Struct. 44(3), 270–282 (2016)CrossRefGoogle Scholar
  30. 30.
    Ding, H., Zhang, G.C., Chen, L.Q., Yang, S.P.: Forced vibrations of supercritically transporting viscoelastic beams. J. Vib. Acoust. 134(5), 051007 (2012)CrossRefGoogle Scholar
  31. 31.
    Ding, H., Zu, J.W.: Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness. J. Vib. Acoust. 136(4), 041006 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  2. 2.Department of MechanicsShanghai UniversityShanghaiChina

Personalised recommendations