Nonlinear Dynamics

, Volume 92, Issue 2, pp 315–324 | Cite as

Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection

  • Nianqiang Li
  • R. M. Nguimdo
  • A. Locquet
  • D. S. Citrin
Original Paper


In this paper, we investigate the possibility of using optical injection to efficiently suppress the time-delay (TD) signatures of chaotic signals in a large experimentally accessible parameter range of semiconductor ring lasers (SRLs). We also study how this optical injection can improve the signal bandwidths. The injection signal is obtained from a master SRL with either optical self- or cross-feedback. For optical self-feedback configurations, it is found that the suppression of TD signatures is similar to what has been found in injected Fabry–Perot semiconductor lasers, i.e., narrow range of parameters with respect to the detuning and injection strengths. For cross-feedback configurations, however, the TD signatures can be suppressed in a wide range of parameters; meanwhile, the bandwidths are significantly improved for the same range of parameters. This is particularly useful for the security in chaos-based communications and also for generating random bits with improved properties.


Chaos Optical feedback Optical injection Time-delay signature Semiconductor ring laser 



This work was supported in part by the Engineering and Physical Sciences Research Council (Grant No. EP/M0242371/1) and in part by the Conseil Regional de la \(\hbox {R}\acute{e}\)gion Grand Est. R.M.N acknowledges the support of the F.N.R.S. (Belgium)


  1. 1.
    Sciamanna, M., Shore, K.A.: Physics and applications of laser diode chaos. Nat. Photonics 9, 151–162 (2015)CrossRefGoogle Scholar
  2. 2.
    Nguimdo, R.M., Colet, P., Larger, L., Pesquera, L.: Digital key for chaos communication performing time delay concealment. Phys. Rev. Lett. 107, 034103 (2011)CrossRefGoogle Scholar
  3. 3.
    Rontani, D., Choi, D., Chang, C.Y., Locquet, A., Citrin, D.S.: Compressive sensing with optical chaos. Sci. Rep. 6, 35206 (2016)CrossRefGoogle Scholar
  4. 4.
    Jiang, N., Xue, C., Lv, Y., Qiu, K.: Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers. Nonlinear Dyn. 86, 1937–1949 (2016)CrossRefGoogle Scholar
  5. 5.
    Deng, T., Xia, G.Q., Wu, Z.M.: Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection. Nonlinear Dyn. 76, 399–407 (2014)CrossRefGoogle Scholar
  6. 6.
    Winebarger, J., Locquet, A., Citrin, D.S.: Breaking on/off phase-shift keying in optical chaos-based cryptosystems. Proc. SPIE 7720, 772025 (2010)CrossRefGoogle Scholar
  7. 7.
    Li, N., Kim, B., Chizhevsky, V.N., Locquet, A., Bloch, M., Citrin, D.S., Pan, W.: Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser. Opt. Express 22, 6634–6646 (2014)CrossRefGoogle Scholar
  8. 8.
    Rontani, D., Locquet, A., Sciamanna, M., Citrin, D.S.: Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32, 2960–2962 (2007)CrossRefGoogle Scholar
  9. 9.
    Nguimdo, R.M., Soriano, M.C., Colet, P.: Role of the phase in the identification of delay time in semiconductor lasers with optical feedback. Opt. Lett. 36, 4332–4334 (2011)CrossRefGoogle Scholar
  10. 10.
    Li, S., Liu, Q., Chan, S.C.: Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser. IEEE Photonics J. 4, 1930–1935 (2012)CrossRefGoogle Scholar
  11. 11.
    Wang, A., Wang, B., Wang, Y., Shore, K.A.: Optical heterodyne generation of high dimensional and broadband white chaos. IEEE J. Sel. Top. Quantum Electron. 21, 1800710 (2015)Google Scholar
  12. 12.
    Cheng, C., Chen, Y., Lin, F.: Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express 23, 2308–2319 (2015)CrossRefGoogle Scholar
  13. 13.
    Li, N., Pan, W., Xiang, S., Yan, L., Luo, B., Zou, X., Zhang, L., Mu, P.: Photonic generation of wideband time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser. IEEE J. Quantum Electron. 48, 1339–1345 (2012)CrossRefGoogle Scholar
  14. 14.
    Xiang, S., Pan, W., Zhang, L., Wen, A., Shang, L., Zhang, H., Lin, L.: Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser. Opt. Commun. 324, 38–46 (2014)CrossRefGoogle Scholar
  15. 15.
    Wu, J., Wu, Z., Xia, G., Feng, G.: Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system. Opt. Express 20, 1741–1753 (2012)CrossRefGoogle Scholar
  16. 16.
    Hong, Y., Quirce, A., Wang, B., Ji, S., Panajotov, K., Spencer, P.S.: Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 52, 2400508 (2016)CrossRefGoogle Scholar
  17. 17.
    Virte, M., Panajotov, K., Thienpont, H., Sciamanna, M.: Deterministic polarization chaos from a laser diode. Nat. Photonics 7, 60–65 (2013)CrossRefGoogle Scholar
  18. 18.
    Li, N., Pan, W., Locquet, A., Citrin, D.S.: Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett. 40, 4416–4419 (2015)CrossRefGoogle Scholar
  19. 19.
    Gao, X., Cheng, M., Deng, L., Liu, L., Hu, H., Liu, D.: A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops. Nonlinear Dyn. 82, 611–617 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ermakov, I.V., Van der Sande, G., Danckaert, J.: Semiconductor ring laser subject to delayed optical feedback: bifurcations and stability. Commun. Nonlinear Sci. Numer. Simul. 17, 4767–4779 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sorel, M., Giuliani, G., Sciré, A., Miglierina, R., Donati, S., Laybourn, P.J.R.: Operating regimes of GaAs–AlGaAs semiconductor ring lasers: experimental and model. IEEE J. Quantum Electron. 39, 1187–1195 (2003)CrossRefGoogle Scholar
  22. 22.
    Nguimdo, R.M., Verschaffelt, G., Danckaert, J., van der Sande, G.: Delay signature concealment in chaotic semiconductor ring lasers. Proc. SPIE 9134, 913424 (2014)CrossRefGoogle Scholar
  23. 23.
    Nguimdo, R.M., Verschaffelt, G., Danckaert, J., van der Sande, G.: Loss of time-delay signature in chaotic semiconductor ring lasers. Opt. Lett. 37, 2541–2543 (2012)CrossRefGoogle Scholar
  24. 24.
    Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Van der Sande, G.: Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans. Neural Netw. Learn. Syst. 26, 3301–3307 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mashal, L., van der Sande, G., Gelens, L., Danckaert, J., Verschaffelt, G.: Square-wave oscillations in semiconductor ring lasers with delayed optical feedback. Opt. Express 20, 22503–22516 (2012)CrossRefGoogle Scholar
  26. 26.
    Heiligenthal, S., Jüngling, T., D’Huys, O., Arroyo-Almanza, D.A., Soriano, M.C., Fischer, I., Kanter, I., Kinzel, W.: Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Phys. Rev. E 88, 012902 (2013)CrossRefGoogle Scholar
  27. 27.
    Toomey, J.P., Kane, D.M.: Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 22, 1713–1725 (2014)CrossRefGoogle Scholar
  28. 28.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)CrossRefGoogle Scholar
  29. 29.
    Li, N., Zunino, L., Locquet, A., Kim, B., Choi, D., Pan, W., Citrin, D.S.: Multiscale ordinal symbolic analysis of the Lang–Kobayashi model for external-cavity semiconductor lasers: a test of theory. IEEE J. Quantum Electron. 51, 2200206 (2015)Google Scholar
  30. 30.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.: National Institute of Standards and Technology, Special Publication 800-22, 2001, Revision 1a, 2010.
  31. 31.
    Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Leijtens, X., Bolk, J., Van der Sande, G.: Fast random bits generation based on a single chaotic semiconductor ring laser. Opt. Express 20, 28603–28613 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
  2. 2.Optique Nonlinéaire ThéoriqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.UMI 2958 Georgia Tech-CNRSGeorgia Tech LorraineMetzFrance

Personalised recommendations