Advertisement

Nonlinear Dynamics

, Volume 92, Issue 2, pp 305–313 | Cite as

Brief review on application of nonlinear dynamics in image encryption

  • Fatih Özkaynak
Original Paper

Abstract

Chaos-based cryptology has become one of the most common design techniques to design new encryption algorithms in the last two decades. However, many proposals have been observed to be weak against simple known attacks. However, security of proposals cannot be proved. An analysis roadmap is needed for the security analysis of new proposals. This study aims to address this shortcoming. Analysis and test results show that many chaos-based image encryption algorithms previously published in the nonlinear dynamics are actually not as secure as they are expressed although these algorithms do pass several statistical and randomness tests. A checklist has been proposed to solve these problems. The applications of the proposed checklist have been shown for different algorithms. The proposed checklist is thought to be a good starting point for researchers who are considering to work in chaos-based cryptography.

Keywords

Chaos Cryptography Cryptanalysis Hyperchaos Image cipher DNA 

Notes

Acknowledgements

The author thanks the referees who contributed to the development of the article.

References

  1. 1.
    Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arroyo, D., Diaz, J., Rodriguez, F.B.: Cryptanalysis of a one round chaos-based substitution permutation network. Signal Process. 93(5), 1358–1364 (2013)CrossRefGoogle Scholar
  3. 3.
    Li, C., Lin, D., Lü, J.: Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed. 24(3), 64–71 (2017)CrossRefGoogle Scholar
  4. 4.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129–2153 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27(9), 1371–1381 (2009)CrossRefGoogle Scholar
  6. 6.
    Alvarez, G., Amigo, J.M., Arroyo, D., Li, S.: Lessons learnt from the cryptanalysis of chaos-based ciphers. In: Kocarev, L., Lian, S. (eds.) Chaos Based Cryptography Theory Algorithms and Applications, pp. 257–295. Springer, Berlin (2011)CrossRefGoogle Scholar
  7. 7.
    Solak, E.: Cryptanalysis of chaotic ciphers. In: Kocarev, L., Lian, S. (eds.) Chaos Based Cryptography Theory Algorithms and Applications, pp. 227–256. Springer, Berlin (2011)CrossRefGoogle Scholar
  8. 8.
    Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87, 127–133 (2017)CrossRefGoogle Scholar
  9. 9.
    Hu, G., Xiao, D., Zhang, Y., Xiang, T.: An efficient chaotic image cipher with dynamic lookup table driven bit-level permutation strategy. Nonlinear Dyn. 87, 1359–1375 (2017)CrossRefGoogle Scholar
  10. 10.
    Ullah, A., Jamal, S.S., Shah, T.: A novel construction of substitution box using a combination of chaotic maps with improved chaotic range. Nonlinear Dyn. 88, 2757–2769 (2017)CrossRefGoogle Scholar
  11. 11.
    Khan, J.S., Ahmad, J., Khan, M.A.: TD-ERCS map-based confusion and diffusion of autocorrelated data. Nonlinear Dyn. 87, 93–107 (2017)CrossRefGoogle Scholar
  12. 12.
    Murillo-Escobar, M.A., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87, 407–425 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 89, 61–79 (2017)CrossRefGoogle Scholar
  14. 14.
    Hu, T., Liu, Y., Gong, L., Ouyang, C.: An image encryption scheme combining chaos with cycle operation for DNA sequences. Nonlinear Dyn. 87, 51–66 (2017)CrossRefGoogle Scholar
  15. 15.
    Devaraj, P., Kavitha, C.: An image encryption scheme using dynamic S-boxes. Nonlinear Dyn. 86, 927–940 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ye, G., Zhao, H., Chai, H.: Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dyn. 83, 2067–2077 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guesmi, R., Farah, M.A.B., Kachouri, A., Samet, M.: A novel chaos-based image encryption using DNA sequence operation and secure Hash Algorithm SHA-2. Nonlinear Dyn. 83, 1123–1136 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, S., Gao, T.: A coding and substitution frame based on hyper-chaotic systems for secure communication. Nonlinear Dyn. 84, 833–849 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, X., Zhang, H.: A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems. Nonlinear Dyn. 83, 333–346 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, X., Liu, C., Zhang, H.: An effective and fast image encryption algorithm based on Chaos and interweaving of ranks. Nonlinear Dyn. 84, 1595–1607 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Souyah, A., Faraoun, K.M.: An image encryption scheme combining chaos-memory cellular automata and weighted histogram. Nonlinear Dyn. 86, 639–653 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Luo, Y., Cao, L., Qiu, S., Lin, H., Harkin, J., Liu, J.: A chaotic map-control-based and the plain image-related cryptosystem. Nonlinear Dyn. 83, 2293–2310 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mannai, O., Bechikh, R., Hermassi, H., Rhouma, R., Belghith, S.: A new image encryption scheme based on a simple first-order time-delay system with appropriate nonlinearity. Nonlinear Dyn. 82, 107–117 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yao, W., Zhang, X., Zheng, Z., Qiu, W.: A colour image encryption algorithm using 4-pixel Feistel structure and multiple chaotic systems. Nonlinear Dyn. 81, 151–168 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Haroun, M.F., Gulliver, T.A.: A new 3D chaotic cipher for encrypting two data streams simultaneously. Nonlinear Dyn. 81, 1053–1066 (2015)CrossRefGoogle Scholar
  26. 26.
    Seyedzadeh, S.M., Norouzi, B., Mosavi, M.R., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81, 511–529 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, X., Zhang, Y., Zhao, Y.: A novel image encryption scheme based on 2-D logistic map and DNA sequence operations. Nonlinear Dyn. 82, 1269–1280 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, X., Xu, D.: A novel image encryption scheme using chaos and Langton’s Ant cellular automaton. Nonlinear Dyn. 79, 2449–2456 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jawad, L.M., Sulong, G.: Chaotic map-embedded Blowfish algorithm for security enhancement of colour image encryption. Nonlinear Dyn. 81, 2079–2093 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Dutta, S.S.S., Singha, R., Kotal, A., Palit, S.: Confusion and diffusion of color images with multiple chaotic maps and chaos-based pseudorandom binary number generator. Nonlinear Dyn. 80, 615–627 (2015)CrossRefGoogle Scholar
  31. 31.
    García-Martínez, M., Campos-Cantón, E.: Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 82, 2119–2131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82, 527–533 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Chen, J., Zhu, Z., Fu, C., Zhang, L., Zhang, Y.: An efficient image encryption scheme using lookup table-based confusion and diffusion. Nonlinear Dyn. 81, 1151–1166 (2015)CrossRefGoogle Scholar
  34. 34.
    Tong, X.J., Wang, Z., Zhang, M., Liu, Y., Xu, H., Ma, J.: An image encryption algorithm based on the perturbed high-dimensional chaotic map. Nonlinear Dyn. 80, 1493–1508 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, X., Zhao, Z.: Chaos-based image encryption with total shuffling and bidirectional diffusion. Nonlinear Dyn. 75, 319–330 (2014)CrossRefGoogle Scholar
  36. 36.
    Norouzi, B., Mirzakuchaki, S.: A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn. 78, 995–1015 (2014)CrossRefGoogle Scholar
  37. 37.
    Chen, J., Zhu, Z., Fu, C., Yu, H.: A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn. 77, 1191–1207 (2014)CrossRefGoogle Scholar
  38. 38.
    Tong, X., Zhang, M., Wang, Z., Liu, Y.: A image encryption scheme based on dynamical perturbation and linear feedback shift register. Nonlinear Dyn. 78, 2277–2291 (2014)CrossRefGoogle Scholar
  39. 39.
    Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76, 1943–1950 (2014)CrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, X., Xu, D.: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 75, 345–353 (2014)CrossRefGoogle Scholar
  41. 41.
    Wang, X., Wang, Q.: A novel image encryption algorithm based on dynamic S-boxes constructed by chaos. Nonlinear Dyn. 75, 567–576 (2014)CrossRefGoogle Scholar
  42. 42.
    Zhang, X., Mao, Y., Zhao, Z.: An efficient chaotic image encryption based on alternate circular S-boxes. Nonlinear Dyn. 78, 359–369 (2014)CrossRefGoogle Scholar
  43. 43.
    Hussain, I., Gondal, M.A.: An extended image encryption using chaotic coupled map and S-box transformation. Nonlinear Dyn. 76, 1355–1363 (2014)CrossRefGoogle Scholar
  44. 44.
    Wang, X., Bao, X.: A novel block cryptosystem based on the coupled chaotic map lattice. Nonlinear Dyn. 72, 707–715 (2013)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: A novel image encryption algorithm based on chaotic maps and GF(28) exponent transformation. Nonlinear Dyn. 72, 399–406 (2013)CrossRefGoogle Scholar
  46. 46.
    Wang, X., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62, 615–621 (2010)CrossRefzbMATHGoogle Scholar
  47. 47.
    Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT), 31–38 (2011)Google Scholar
  48. 48.
    Wen, W., Zhang, Y., Su, M., Zhang, R., Chen, J., Li, M.: Differential attack on a hyper-chaos-based image cryptosystem with a classic bi-modular architecture. Nonlinear Dyn. 87, 383–390 (2017)CrossRefGoogle Scholar
  49. 49.
    Chen, L., Ma, B., Zhao, X., Wang, S.: Differential cryptanalysis of a novel image encryption algorithm based on chaos and Line map. Nonlinear Dyn. 87, 1797–1807 (2017)CrossRefGoogle Scholar
  50. 50.
    Liu, Y., Zhang, L.Y., Wang, J., Zhang, Y., Wong, K.: Chosen-plaintext attack of an image encryption scheme based on modified permutation–diffusion structure. Nonlinear Dyn. 84, 2241–2250 (2016)CrossRefzbMATHGoogle Scholar
  51. 51.
    Yap, W., Phan, R.C., Yau, W., Heng, S.: Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 80, 1483–1491 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Zhang, Y., Wang, X.: Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation. Nonlinear Dyn. 77, 687–698 (2014)CrossRefGoogle Scholar
  53. 53.
    Belazi, A., Hermassi, H., Rhouma, R., Belghith, S.: Algebraic analysis of a RGB image encryption algorithm based on DNA encoding and chaotic map. Nonlinear Dyn. 76, 1989–2004 (2014)CrossRefzbMATHGoogle Scholar
  54. 54.
    Özkaynak, F., Özer, A.B.: Cryptanalysis of a new image encryption algorithm based on chaos. Optik 127, 5190–5192 (2016)CrossRefGoogle Scholar
  55. 55.
    Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78, 1545–1551 (2014)CrossRefGoogle Scholar
  56. 56.
    Zhang, Y., Xiao, D., Wen, W., Li, M.: Breaking an image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Nonlinear Dyn. 76, 1645–1650 (2014)CrossRefGoogle Scholar
  57. 57.
    Zhu, C., Liao, C., Deng, X.: Breaking and improving an image encryption scheme based on total shuffling scheme. Nonlinear Dyn. 71, 25–34 (2013)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Li, C., Zhang, L.Y., Ou, R., Wong, K., Shu, S.: Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70, 2383–2388 (2012)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Zhang, Y., Li, C., Li, Q., Zhang, D., Shu, S.: Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 69, 1091–1096 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Zhu, C., Xu, S., Hu, Y., Sun, K.: Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 79, 1511–1518 (2015)CrossRefGoogle Scholar
  61. 61.
    Zhang, Y., Xiao, D.: Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn. 72, 751–756 (2013)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Su, M., Wen, W., Zhang, Y.: Security evaluation of bilateral-diffusion based image encryption algorithm. Nonlinear Dyn. 77, 243–246 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Özkaynak, F., Özer, A.B., Yavuz, S.: Cryptanalysis of a novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285(24), 4946–4948 (2012)CrossRefGoogle Scholar
  64. 64.
    Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)CrossRefzbMATHGoogle Scholar
  66. 66.
    Özkaynak, F., Özer, A.B.: Security analysis of an image encryption algorithm based on chaos and DNA encoding. In: 21st Signal Processing and Communications Applications Conference (2013)Google Scholar
  67. 67.
    Xie, E.Y., Li, C., Yu, S., Lü, J.: On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. 132, 150–154 (2017)CrossRefGoogle Scholar
  68. 68.
    Li, C.: Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 118, 203–210 (2016)CrossRefGoogle Scholar
  69. 69.
    Özkaynak, F., Yavuz, S.: Security problems of pseudorandom sequence generator based on Chen chaotic system. Comput. Phys. Commun. 184(9), 2178–2181 (2013)CrossRefzbMATHGoogle Scholar
  70. 70.
    Li, S., Li, C., Chen, G., Bourbakis, N.G., Lo, K.: A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. Image Commun. 23(3), 212–223 (2008)CrossRefGoogle Scholar
  71. 71.
    Li, C., Lo, K.: Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. 91(4), 949–954 (2011)CrossRefzbMATHGoogle Scholar
  72. 72.
    Huang, C.K., Nien, H.H.: Multi chaotic systems based pixel shuffle for image encryption. Opt. Commun. 282, 2123–2127 (2009)CrossRefGoogle Scholar
  73. 73.
    Özkaynak, F.: Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 78(3), 2015–2020 (2014)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Avaroğlu, E., Tuncer, T., Özer, A.B., Ergen, B., Türk, M.: A novel chaos-based post-processing for TRNG. Nonlinear Dyn. 81, 189–199 (2015)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Avaroğlu, E., Koyuncu, İ., Özer, A.B., Türk, M.: Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dyn. 82, 239–248 (2015)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Persohn, K.J., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fractals 45(3), 238–245 (2012)CrossRefGoogle Scholar
  77. 77.
    Özkaynak, F., Özer, A.B.: An analysis study on role of chaos in symmetric encryption algorithm. In: The 8th Chaotic Modeling and Simulation International Conference, Paris (2015)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Software EngineeringFırat UniversityElazigTurkey

Personalised recommendations