Nonlinear Dynamics

, Volume 92, Issue 2, pp 247–265 | Cite as

Periodically intermittent control strategies for \(\varvec{\alpha }\)-exponential stabilization of fractional-order complex-valued delayed neural networks

  • Peng Wan
  • Jigui Jian
  • Jun Mei
Original Paper


This paper studies the global \(\alpha \)-exponential stabilization of a kind of fractional-order neural networks with time delay in complex-valued domain. To end this, several useful fractional-order differential inequalities are set up, which generalize and improve the existing results. Then, a suitable periodically intermittent control scheme with time delay is put forward for the global \(\alpha \)-exponential stabilization of the addressed networks, which include feedback control as a special case. Utilizing these useful fractional-order differential inequalities and combining with the Lyapunov approach and other inequality techniques, some novel delay-independent criteria in terms of real-valued algebraic inequalities are obtained to ensure global \(\alpha \)-exponential stabilization of the discussed networks, which are very simple to implement in practice and avert to calculate the complex matrix inequalities. Finally, the availability of the theoretical criteria is verified by an illustrative example with simulations.


Fractional-order Complex-valued neural network Delay \(\alpha \)-exponential stabilization Periodically intermittent control Inequality technique 



This work is supported partially by the National Natural Science Foundation of China (11601268).


  1. 1.
    Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, New York (2006)zbMATHGoogle Scholar
  3. 3.
    Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Stamova, I., Stamov, G.: Stability analysis of impulsive functional systems of fractional order. Commun. Nonlinear Sci. Numer. Simul. 19, 702–709 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fernandez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Muñoz-Vega, R., Hernández-Martínez, E.G.: Lyapunov functions for a class of nonlinear systems using Caputo derivative. Commun. Nonlinear Sci. Numer. Simul. 43, 91–99 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Daftardar-Gejji, V., Bhalekar, S., Gade, P.: Dynamics of fractional-ordered Chen system with delay. Pramana 79, 61–69 (2012)CrossRefGoogle Scholar
  10. 10.
    Yu, J., Hu, C., Jiang, H.J.: \(\alpha \)-stability and \(\alpha \)-synchronization for fractional-order neural networks. Neural Netw. 35, 82–87 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wu, H.Q., Zhang, X.X., Xue, S.H., Wang, L.F., Wang, Y.: LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses. Neurocomputing 193, 148–154 (2016)CrossRefGoogle Scholar
  12. 12.
    Song, C., Cao, J.D.: Dynamics in fractional-order neural networks. Neurocomputing 142, 494–498 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Yu, Y.G., Wen, G.G., Zhang, S., Yu, J.Z.: Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154, 15–23 (2015)CrossRefGoogle Scholar
  14. 14.
    Stamova, I.: Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 77, 1251–1260 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, C.N., Chu, R.T., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21, 370–378 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Park, J.H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J. Comput. Appl. Math. 213, 288–293 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bao, H.B., Park, J.H., Cao, J.D.: Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays. Appl. Math. Comput. 270, 543–556 (2015)MathSciNetGoogle Scholar
  18. 18.
    Chen, W.H., Jiang, Z.Y., Lu, X.M., Luo, S.X.: \(H_{\infty }\) synchronization for complex dynamical networks with coupling delays using distributed impulsive control. Nonlinear Anal. Hybrid Syst. 17, 111–127 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mei, J., Jiang, M.H., Wu, Z., Wang, X.H.: Periodically intermittent controlling for finite-time synchronization of complex dynamical networks. Nonlinear Dyn. 79, 295–305 (2015)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wei, L.N., Chen, W.H., Huang, G.J.: Globally exponential stabilization of neural networks with mixed time delays via impulsive control. Appl. Math. Comput. 260, 10–26 (2015)MathSciNetGoogle Scholar
  21. 21.
    Ye, Z.Y., Zhang, H., Zhang, H.Y., Zhang, H., Lu, G.C.: Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters. Chaos Soliton Fractals 73, 156–165 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    He, H.L., Yan, L., Tu, J.J.: Guaranteed cost stabilization of time-varying delay cellular neural networks via Riccati inequality approach. Neural Process. Lett. 35, 151–158 (2012)CrossRefGoogle Scholar
  23. 23.
    Liu, X.Y., Jiang, N., Cao, J.D., Wang, S.M., Wang, Z.X.: Finite-time stochastic stabilization for BAM neural networks with uncertainties. J. Frankl. Inst. 350, 2109–2123 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, X.Y., Park, J.H., Jiang, N., Cao, J.D.: Nonsmooth finite-time stabilization of neural networks with discontinuous activations. Neural Netw. 52, 25–32 (2014)CrossRefzbMATHGoogle Scholar
  25. 25.
    Chen, W.H., Zhong, J.C., Zheng, W.X.: Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica 71, 89–97 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhu, X.L., Wang, Y.Y.: Stabilization for sampled-data neural-network-based control systems. IEEE Trans. Syst. Man Cybern. 41, 210–221 (2011)CrossRefGoogle Scholar
  27. 27.
    Zhang, G.D., Shen, Y.: Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw. 55, 1–10 (2014)CrossRefzbMATHGoogle Scholar
  28. 28.
    Yang, X.S., Cao, J.D.: Stochastic synchronization of coupled neural networks with intermittent control. Phys. Lett. A 373, 3259–3272 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yang, S.J., Li, C.D., Huang, T.W.: Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw. 75, 162–172 (2016)CrossRefGoogle Scholar
  30. 30.
    Zhang, Z.M., He, Y., Zhang, C.K., Wu, M.: Exponential stabilization of neural networks with time-varying delay by periodically intermittent control. Neurocomputing 207, 469–475 (2016)CrossRefGoogle Scholar
  31. 31.
    Nitta, T.: Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Netw. 16, 1101–1105 (2003)CrossRefGoogle Scholar
  32. 32.
    Song, Q.K., Yan, H., Zhao, Z.J., Liu, Y.R.: Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects. Neural Netw. 79, 108–116 (2015)CrossRefGoogle Scholar
  33. 33.
    Song, Q.K., Zhao, Z.J., Liu, Y.R.: Stability analysis of complex-valued neural networks with probabilistic time-varying delays. Neurocomputing 159, 96–104 (2015)CrossRefGoogle Scholar
  34. 34.
    Rakkiyappan, R., Cao, J.D., Velmurugan, G.: Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 84–97 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rakkiyappan, R., Sivaranjani, R., Velmurugan, G., Cao, J.D.: Analysis of global \(o(t^{-\alpha })\) stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays. Neural Netw. 77, 51–69 (2016)CrossRefGoogle Scholar
  36. 36.
    Rakkiyappan, R., Velmurugan, G., Cao, J.D.: Stability analysis of fractional-order complex-valued neural networks with time delays. Chaos Soliton Fractals 78, 297–316 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Jian, J.G., Wan, P.: Lagrange \(\alpha \)-exponential stability and \(\alpha \)-exponential convergence for fractional-order complex-valued neural networks. Neural Netw. 91, 1–10 (2017)CrossRefGoogle Scholar
  38. 38.
    Liu, L., Wu, A.L., Song, X.G.: Global \(o(t^{-\alpha })\) stabilization of fractional-order memristive neural networks with time delays. Springerplus 5, 1–22 (2016)CrossRefGoogle Scholar
  39. 39.
    Wu, A.L., Zeng, Z.G., Song, X.G.: Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks. Neurocomputing 177, 489–496 (2016)CrossRefGoogle Scholar
  40. 40.
    Su, K.L., Li, C.L.: Control chaos in fractional-order system via two kinds of intermittent schemes. Optik 126, 2671–2673 (2015)CrossRefGoogle Scholar
  41. 41.
    Bao, H.B., Park, J.H., Cao, J.D.: Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw. 81, 16–28 (2016)CrossRefGoogle Scholar
  42. 42.
    Ji, Y.D., Qiu, J.Q.: Stabilization of fractional-order singular uncertain systems. ISA Trans. 56, 53–64 (2015)CrossRefGoogle Scholar
  43. 43.
    Wan, P., Jian, J.G.: Global convergence analysis of impulsive inertial neural networks with time-varying delays. Neurocomputing 245, 68–76 (2017)CrossRefGoogle Scholar
  44. 44.
    Bhalekar, S., Daftardar-Gejji, V.: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1, 1–9 (2011)zbMATHGoogle Scholar
  45. 45.
    Yuan, L.G., Yang, Q.G., Zeng, C.B.: Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73, 439–448 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceChina Three Gorges UniversityYichangChina
  2. 2.Department of Electrical, Electric and Computer Engineering, Centre of New Energy SystemsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations