Nonlinear Dynamics

, Volume 92, Issue 2, pp 203–213 | Cite as

Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber

  • Chunyu Yang
  • Wenyi Li
  • Weitian Yu
  • Mengli Liu
  • Yujia Zhang
  • Guoli Ma
  • Ming Lei
  • Wenjun Liu
Original Paper


Amplification, reshaping, fission and annihilation of optical solitons can be applied in fiber lasers, all-optical switching devices and optical communications. In this paper, for the variable coefficient high-order nonlinear Schrödinger equation, analytic two- and three-soliton solutions are derived by the Hirota bilinear method. Optical solitons propagation in the dispersion-decreasing fibers is investigated theoretically. The influence of corresponding parameters is discussed based on obtained solutions. By choosing properly parameters, optical solitons are amplified and reshaped stably in a long distance. Besides, the number of amplified solitons can be chosen as required. Moreover, a novel phenomenon that three solitons can split into four solitons or merge into two solitons has been proposed. Results may be helpful to realize the amplification, reshaping, fission and annihilation of solitons, and will be valuable to the applications of optical amplifier, all-optical switching and optical self-routing.


Optical solitons Soliton amplification Soliton reshaping Soliton fusion Soliton annihilation 



This work was supported by the National Natural Science Foundation of China (Grant No. 11674036), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833ZK08), and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Porsezian, K., Hasegawa, A., Serkin, V.N., Belyaeva, T.L., Ganapathy, R.: Dispersion and nonlinear management for femtosecond optical solitons. Phys. Lett. A 361(6), 504–508 (2007)CrossRefGoogle Scholar
  2. 2.
    Dromey, B., Kar, S., Zepf, M., Foster, P.: The plasma mirrorła subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75(3), 645–649 (2004)CrossRefGoogle Scholar
  3. 3.
    Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Subramanian, K., Alagesan, T., Mahalingam, A., Mani Rajan, M.S.: Propagation properties of optical soliton in an erbium-doped tapered parabolic index nonlinear fiber: soliton control. Nonlinear Dyn. 87(3), 1575–1587 (2017)CrossRefGoogle Scholar
  6. 6.
    Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79(6), 063810 (2009)CrossRefGoogle Scholar
  7. 7.
    Busch, Th, Anglin, J.R.: Dark-bright solitons in inhomogeneous Bose–Einstein condensates. Phys. Rev. Lett. 87(1), 010401 (2001)CrossRefGoogle Scholar
  8. 8.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012)CrossRefGoogle Scholar
  9. 9.
    Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic–quintic–septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87(3), 1675–1683 (2017)CrossRefGoogle Scholar
  10. 10.
    Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1–2), 591–596 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96(4), 042201 (2017)CrossRefGoogle Scholar
  12. 12.
    Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37(5), 823–828 (1973)Google Scholar
  13. 13.
    Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, W.J., Zhang, Y.J., Pang, L.H., Yan, H.L., Lei, M., Z. Wei, Z.Y.: Study on the control technology of optical solitons in optical fibers. Nonninear Dyn. 86(2), 1069–1073 (2016)CrossRefGoogle Scholar
  15. 15.
    Tang, B., Li, D.J.: Quantum signature of discrete breathers in a nonlinear Klein–Gordon lattice with nearest and next-nearest neighbor interactions. Commun. Nonlinear Sci. Numer. Simul. 34, 77–85 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tang, B.: Quantum breathers and two-breathers in the \(\beta \)-Fermi–Pasta–Ulam chain with the second-neighbor coupling. Commun. Nonlinear Sci. Numer. Simul. 48, 361–375 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, Y.Y., Zhang, Y.P., Dai, C.Q.: Re-study on localized structures based on variable separation solutions from the modified tanh-function method. Nonlinear Dyn. 83(3), 1331–1339 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Agrawal, G.P.: Nonlinear fiber optics, 4th edn. Academic Press, San Diego (2007)zbMATHGoogle Scholar
  19. 19.
    Mani Rajan, M.S.: Dynamics of optical soliton in a tapered erbium-doped fiber under periodic distributed amplification system. Nonlinear Dyn. 85(1), 599–606 (2016)CrossRefGoogle Scholar
  20. 20.
    Mani Rajan, M.S., Mahalingam, A., Uthayakumar, A., Porsezian, K.: Observation of two soliton propagation in an erbium doped inhomogeneous lossy fiber with phase modulation. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1410–1432 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84(2), 1107–1112 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85(2), 731–737 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M., Wei, Z.Y.: Bidirectional all-optical switches based on highly nonlinear optical fibers. EPL 118(3), 34004 (2017)CrossRefGoogle Scholar
  24. 24.
    Amiri, I.S., Nikmaram, M., Shahidinejad, A., Ali, J.: Cryptography scheme of an optical switching system using pico/femto second soliton pulse. IJAET 5(1), 176–184 (2012)Google Scholar
  25. 25.
    Liu, W.J., Liu, M.L., Lei, M., Fang, S.B., Wei, Z.Y.: Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser. IEEE J Sel. Top. Quantum 24(3), 0901005 (2018)Google Scholar
  26. 26.
    Wang, L., Jiang, D.Y., Qi, F.H., Shi, Y.Y., Zhao, Y.C.: Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model. Commun. Nonlinear Sci. Numer. Simul. 42, 502–519 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89(4), 2933–2939 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu, W.J., Pang, L.H., Han, H.N., Tian, W.L., Chen, H., Lei, M., Yan, P.G., Wei, Z.Y.: 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep. 6, 19997 (2016)CrossRefGoogle Scholar
  29. 29.
    Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74(3), 701–709 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhao, H.H., Zhao, X.J., Hao, H.Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hao, H.Q., Guo, R., Zhang, J.Y.: Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrödinger equation. Nonlinear Dyn. 88(3), 1615–1622 (2017)CrossRefzbMATHGoogle Scholar
  32. 32.
    Liu, W.J., Pang, L.H., Han, H.N., Liu, M.L., Lei, M., Fang, S.B., Teng, H., Wei, Z.Y.: Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express 25(3), 2950–2959 (2017)CrossRefGoogle Scholar
  33. 33.
    Liu, W.J., Pang, L.H., Han, H.N., Bi, K., Lei, M., Wei, Z.Y.: Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 9(18), 5806–5811 (2017)CrossRefGoogle Scholar
  34. 34.
    Liu, W.J., Pang, L.H., Han, H.N., Shen, Z.W., Lei, M., Teng, H., Wei, Z.Y.: Dark solitons in WS\(_{2}\) erbium-doped fiber lasers. Photonics Res. 4(3), 111–114 (2016)CrossRefGoogle Scholar
  35. 35.
    Mani Rajan, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79(4), 2469–2484 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mahalingam, A., Mani Rajan, M.S.: Influence of generalized external potentials on nonlinear tunneling of nonautonomous solitons: soliton management. Opt. Fiber Technol. 25, 44–50 (2015)CrossRefGoogle Scholar
  37. 37.
    Mani Rajan, M.S.: Unexpected behavior on nonlinear tunneling of chirped ultrashort soliton pulse in non-Kerr media with Raman effect. Z. Naturforsch. A 71(8), 751–758 (2016)Google Scholar
  38. 38.
    Mani Rajan, M.S., Mahalingam, A.: Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrödinger–Maxwell–Bloch system with loss/gain driven by an external potential. J. Math. Phys. 54(4), 043514 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Vijayalekshmi, S., Mani Rajan, M.S., Mahalingam, A., Uthayakumar, A.: Hidden possibilities in soliton switching through tunneling in erbium doped birefringence fiber with higher order effects. J. Mod. Opt. 62(4), 278–287 (2015)CrossRefGoogle Scholar
  40. 40.
    Hasegawa, A., Kodama, Y.: Amplification and reshaping of optical solitons in a glass fiber-I. Opt. Lett. 7(6), 285–287 (1982)CrossRefGoogle Scholar
  41. 41.
    Hasegawa, A.: Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process. Appl. Opt. 23(19), 3302–3309 (1984)CrossRefGoogle Scholar
  42. 42.
    Sun, Z.Y., Gao, Y.T., Yu, X., Liu, Y.: Amplification of nonautonomous solitons in the Bose–Einstein condensates and nonlinear optics. EPL 93(4), 40004 (2011)CrossRefGoogle Scholar
  43. 43.
    Tajima, K.: Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett. 12(1), 54–56 (1987)CrossRefGoogle Scholar
  44. 44.
    Chernikov, S.V., Dianov, E.M., Richardson, D.J., Laming, R.I., Payne, D.N.: 114 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber. Appl. Phys. Lett. 63(3), 293–295 (1993)CrossRefGoogle Scholar
  45. 45.
    Chernikov, S.V., Dianov, E.M., Richardson, D.J., Payne, D.N.: Soliton pulse compression in dispersion-decreasing fiber. Opt. Lett. 18(70), 476–478 (1993)CrossRefGoogle Scholar
  46. 46.
    Wang, Y.Y., Dai, C.Q., Zhou, G.Q., Fan, Y., Chen, L.: Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87(1), 67–73 (2017)CrossRefGoogle Scholar
  47. 47.
    Hirooka, T., Nakazawa, M.: Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. Opt. Lett. 29(5), 498–500 (2004)CrossRefGoogle Scholar
  48. 48.
    Finot, C., Barviau, B., Millot, G., Guryanov, A., Sysoliatin, A., Wabnitz, S.: Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Opt. Express 15(24), 15824–15835 (2007)CrossRefGoogle Scholar
  49. 49.
    Liu, W.J., Tian, B., Li, L.L., Yu, X., Sun, Z.Y.: Analytic study on the pulse transmission control system in dispersion decreasing fibers. J. Mod. Opt. 56(10), 1151–1158 (2009)CrossRefzbMATHGoogle Scholar
  50. 50.
    Korobko, D.A., Okhotnikov, O.G., Zolotovskii, I.O.: High-repetition-rate pulse generation and compression in dispersion decreasing fibers. J. Opt. Soc. Am. B 30(9), 2377–2386 (2013)CrossRefGoogle Scholar
  51. 51.
    Liu, W.J., Pang, L.H., Yan, H., Lei, M.: Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn. 84(4), 2205–2209 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Peng, G.D., Ankiewicz, A.: Fundamental and second-order solition transmission in nonlinear directional fiber couplers. J. Nonlinear Opt. Phys. 1(1), 135–150 (1992)CrossRefGoogle Scholar
  53. 53.
    Friberg, S.R.: Demonstration of colliding-soliton all-optical switching. Appl. Phys. Lett. 63(4), 429–431 (1993)CrossRefGoogle Scholar
  54. 54.
    Zakery, A., Hatami, M.: Design of an ultra-fast all-optical dark soliton switch in a nonlinear directional coupler (NLDC) made of chalcogenide glasses. J. Phys. D. 40(4), 1010–1017 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations