Nonlinear Dynamics

, Volume 91, Issue 4, pp 2803–2817 | Cite as

Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects

  • Vladimir A. Maksimenko
  • Alexey Pavlov
  • Anastasia E. Runnova
  • Vladimir Nedaivozov
  • Vadim Grubov
  • Alexey Koronovslii
  • Svetlana V. Pchelintseva
  • Elena Pitsik
  • Alexander N. Pisarchik
  • Alexander E. Hramov
Original Paper


Identification of brain activity associated with motor execution and, more importantly, with motor imagery is necessary for the development of brain–computer interfaces. Most of recent studies were performed with trained participants which demonstrated that the motor-related brain activity can be detected from the analysis of multichannel electroencephalograms (EEG). For untrained subjects, this task is less studied, but at the same time much more challenging. This task can be solved using the methods of nonlinear dynamics, allowing to extract specific features of the neuronal network of the brain (e.g., the degree of complexity of EEG signals and degree of interaction between different brain areas). In this work, we analyze the spatio-temporal and time–frequency characteristics of the electrical brain activity, associated with both the motor execution and imagery in a group of untrained subjects, by applying different methods of nonlinear dynamics. At the first stage, we apply multifractal formalism to the analysis of EEG signals to reveal the brain areas which demonstrate the most significant distinctions between real motor actions and imaginary movement. Then, using time–frequency wavelet-based analysis of the EEG activity, we analyze in detail the structure of considered brain areas. As a result, we distinguish characteristic oscillatory patterns which occur in different areas of brain and interact with each other when the motor execution (or imagination) takes place. Finally, we create an algorithm allowing online detection of the observed patterns and experimentally verify its efficiency.


Motor action Motor imaginary Wavelet analysis Multifractal analysis Event-related synchronization Empirical mode decomposition EEG Hölder exponent 



This work was supported by the Russian Science Foundation (17-72-30003).


  1. 1.
    Kawase, T., et al.: A Hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. J. Neural Eng. 14, 016015 (2017)CrossRefGoogle Scholar
  2. 2.
    Spüler, M.: A high-speed brain–computer interface (BCI) using dry EEG electrodes. PLoS ONE 12, 2 (2017)CrossRefGoogle Scholar
  3. 3.
    Bowsher, K., et al.: Brain–computer interface devices for patients with paralysis and amputation: a meeting report. J. Neural Eng. 13, 023001 (2016)CrossRefGoogle Scholar
  4. 4.
    Chen, X., et al.: High-speed spelling with a noninvasive brain–computer interface. Proc. Natl. Acad. Sci. 112, 44 (2015)Google Scholar
  5. 5.
    O’Doherty, J.E., et al.: Active tactile exploration using a brain-machine-brain interface. Nature 479, 228 (2011)CrossRefGoogle Scholar
  6. 6.
    Stacey, W.C., et al.: Technology Insight: neuroengineering and epilepsy—designing devices for seizure control. Nat. Rev. 4, 4 (2008)Google Scholar
  7. 7.
    Wolpaw, J., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc. Natl Acad. Sci. USA 101, 17849 (2004)CrossRefGoogle Scholar
  8. 8.
    Birbaumer, N., et al.: A spelling device for the paralyzed. Nature 398b, 297 (2000). 8Google Scholar
  9. 9.
    Ma, T., et al.: The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential. J. Neural Eng. 14, 026015 (2017)CrossRefGoogle Scholar
  10. 10.
    Daly, J.J.: Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032 (2008)CrossRefGoogle Scholar
  11. 11.
    Peternel, L., et al.: Adaptive control of exoskeleton robots for periodic assistive behaviors based on EMG feedback minimization. PLoS ONE 11, 2 (2016)CrossRefGoogle Scholar
  12. 12.
    Maksimenko, V.A., et al.: Absence seizure control by a brain computer interface. Sci. Rep. 7, 2487 (2017)CrossRefGoogle Scholar
  13. 13.
    Kaplan, A.Y., et al.: Adapting the P300-based brain–computer interface for gaming: a review. IEEE Trans. Comput. Intell. AI Games 5, 141 (2013)CrossRefGoogle Scholar
  14. 14.
    Wessberg, J., et al.: Neuroscience: brain-controlled robot grabs attention. Nature 408, 361 (2000)CrossRefGoogle Scholar
  15. 15.
    Serruya, M.D., et al.: Instant neural control of a movement signal. Nature 416, 141 (2002)CrossRefGoogle Scholar
  16. 16.
    Taylor, D.A., et al.: Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829 (2002)CrossRefGoogle Scholar
  17. 17.
    Birbaumer, M., et al.: A spelling device for the paralyzed. Nature 398, 297 (1999)CrossRefGoogle Scholar
  18. 18.
    Melnik, A., et al.: EEG correlates of sensorimotor processing: independent components involved in sensory and motor processing. Sci. Rep. 7, 4461 (2017)CrossRefGoogle Scholar
  19. 19.
    Maximenko, V.A., et al.: Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys. Rev. E 96, 012316 (2017)CrossRefGoogle Scholar
  20. 20.
    Jalili, M.: Functional brain networks: does the choice of dependency estimator and binarization method matter. Sci. Rep. 6, 29780 (2016)CrossRefGoogle Scholar
  21. 21.
    Vasilyev, A., et al.: Assessing motor imagery in brain–computer interface training: psychological and neurophysiological correlates. Neuropsychologia 97, 56 (2017)CrossRefGoogle Scholar
  22. 22.
    Basyul, I.A., et al.: Changes in the N200 and P300 components of event-related potentials on variations in the conditions of attention in a brain-computer interface system. Neurosci. Behav. Physiol. 45(9), 1038 (2015)CrossRefGoogle Scholar
  23. 23.
    Ma, T., et al.: The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing. J. Neurosci. Methods 275, 80 (2017)CrossRefGoogle Scholar
  24. 24.
    Quitadamo, L.R., et al.: Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: a review. J. Neural Eng. 14, 011001 (2017)CrossRefGoogle Scholar
  25. 25.
    Wang, Y., et al.: Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications. J. Neuroeng. Rehabil. 10, 109 (2013)CrossRefGoogle Scholar
  26. 26.
    Hamedi, M., et al.: Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput. 28(6), 999 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a non-invasive brain–computer interface in humans. Proc. Natl. Acad. Sci. USA 101(51), 1784917854 (2004)CrossRefGoogle Scholar
  28. 28.
    McFarland, D.J., et al.: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12, 3 (2000)CrossRefGoogle Scholar
  29. 29.
    Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Curio, G.: The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37, 539550 (2007)CrossRefGoogle Scholar
  30. 30.
    Ferrante, A., Gavriel, C., Faisal, A.: Data-efficient hand motor imagery decoding in EEG-BCI by using Morlet wavelets & common spatial pattern algorithms. In: 7th International IEEE/EMBS Conference on Neural Engineering (NER), vol. 948 (2015)Google Scholar
  31. 31.
    Guirao, J.L.G., Luo, A.C.J.: New trends in nonlinear dynamics and chaoticity. Nonlinear Dyn. 84, 1 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gao, J., Hu, J., Tung, W.-W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68(3), 431444 (2012)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Rubchinsky, L.L., Park, C., Worth, R.M.: Intermittent neural synchronization in Parkinsons disease. Nonlinear Dyn. 68(3), 329346 (2012)CrossRefGoogle Scholar
  34. 34.
    Yan, J., Wang, Y., Ouyang, G., Yu, T., Li, Y., Sik, A., Li, X.: Analysis of electrocorticogram in epilepsy patients in terms of criticality. Nonlinear Dyn. 83, 19091917 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wu, Y.-T., Shyu, K.-K., Chen, T.-R., Guo, W.-Y.: Using three-dimensional fractal dimension to analyze the complexity of fetal cortical surface from magnetic resonance images. Nonlinear Dyn. 58, 745 (2009)CrossRefMATHGoogle Scholar
  36. 36.
    Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Nonlinear Dynamics. Lippincot Williams & Wilkins, Philadelphia (2004)Google Scholar
  37. 37.
    Muzy, J.F., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515 (1991)CrossRefGoogle Scholar
  38. 38.
    Muzy, J.F., Bacry, E., Arneodo, A.: Multifractal formalism for fractal signals: the structure function approach versus the wavelet transform modulus maxima method. Phys. Rev. E 47, 875 (1993)CrossRefGoogle Scholar
  39. 39.
    Ivanov, P.C.H., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399, 461465 (1999)CrossRefGoogle Scholar
  40. 40.
    Pavlov, A.N., Anishchenko, V.S.: Multifractal analysis of complex signals. Phys. Uspekhi 50, 819834 (2007)CrossRefGoogle Scholar
  41. 41.
    Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. 454, 903 (1998)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Grubov, V.V., et al.: Automatic extraction and analysis of oscillatory patterns on nonstationary EEG signals by means of wavelet transform and the empirical modes method. BRAS Phys. 76, 1361–1364 (2012)Google Scholar
  43. 43.
    Grubov, V.V., et al.: Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets. Physica A 486, 206–217 (2017)CrossRefGoogle Scholar
  44. 44.
    López-Larraz, E., Montesano, L., Gil-Agudo, Á., Minguez, J., Oliviero, A.: Evolution of EEG motor rhythms after spinal cord injury: a longitudinal study. Plos One 10(7), e0131759 (2015)CrossRefGoogle Scholar
  45. 45.
    Gourab, K., Schmit, B.D.: Changes in movement-related beta-band EEG signals in human spinal cord injury. Clin. Neurophysiol. 121, 2017 (2010)CrossRefGoogle Scholar
  46. 46.
    Gao, L., Wang, J., Chen, L.: Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy. J. Neural Eng. 10(3), 036023 (2013)CrossRefGoogle Scholar
  47. 47.
    Toro, C., Deuschl, G., Thatcher, R., Sato, S., Kufta, C., Hallett, M.: Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr. Clin. Neurophysiol. 93(5), 380–389 (1994)CrossRefGoogle Scholar
  48. 48.
    Duann, J.-R., Chiou, J.-C.: A comparison of independent event-related desynchronization responses in motor-related brain areas to movement execution, movement imagery, and movement observation. PLoS ONE 11(9), e0162546 (2016)CrossRefGoogle Scholar
  49. 49.
    Harmony, T.: The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83 (2013)CrossRefGoogle Scholar
  50. 50.
    Donoghue, J.P., Sanes, J.N.: Motor areas of the cerebral cortex. J. Clin. Neurophysiol. 11(4), 382–396 (1994)Google Scholar
  51. 51.
    Todor, J.I., Doane, T.: Handedness and hemispheric asymmetry in the control of movements. J. Mot. Behav. 10(4), 295–300 (1978)CrossRefGoogle Scholar
  52. 52.
    Sharma, N., Pomeroy, V.M., Baron, J.-C.: Motor imagery: a backdoor to the motor system after stroke? Stroke 37, 19411952 (2006)CrossRefGoogle Scholar
  53. 53.
    Page, S.J., Szaflarski, J.P., Eliassen, J.C., Pan, H., Cramer, S.C.: Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabilit. Neural Repair 23, 382388 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Vladimir A. Maksimenko
    • 1
  • Alexey Pavlov
    • 1
  • Anastasia E. Runnova
    • 1
  • Vladimir Nedaivozov
    • 1
  • Vadim Grubov
    • 1
  • Alexey Koronovslii
    • 2
  • Svetlana V. Pchelintseva
    • 1
  • Elena Pitsik
    • 1
  • Alexander N. Pisarchik
    • 1
    • 3
  • Alexander E. Hramov
    • 1
    • 2
  1. 1.REC “Artificial Intelligence Systems and Neurotechnology”Yuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Faculty of Nonlinear ProcessesSaratov State UniversitySaratovRussia
  3. 3.Center for Biomedical TechnologyTechnical University of MadridPozuelo de AlarconSpain

Personalised recommendations