Skip to main content
Log in

Transportation control of cooperative double-wheel inverted pendulum robots adopting Udwadia-control approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The design and control for cooperative inverted pendulum robots are addressed in this paper. A transportation system consisting of two double-wheel inverted pendulum robots is designed for carrying baggage along a predefined trajectory, the problem lies on the control for transportation. Firstly, two robots are connected with carrier through chute structure, the junction realizes real-time stable for both inverted pendulums. Secondly, whole transportation system is regarded as a constrained multi-body system considering trajectory and is divided into three subsystem: (a) guider robot subsystem; (b) baggage and carrier subsystem; (c) follower robot subsystem, then a simple four-step procedure adopting hierarchical dynamic modeling method is applied to model the dynamic of whole system. Explicit control torques for transportation are elicited through Udwadia-control approach. Simulation is executed last to demonstrate the advantage and simplicity of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Grasser, F., D’arrigo, A., Colombi, S., Rufer, A.C.: JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49, 107–114 (2002)

    Article  Google Scholar 

  2. Yue, M., An, C., Du, Y., Sun, J.: Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets Syst. 290, 158–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, Y., Qiu, B., Liao, B., Yang, Z.: Control of pendulum tracking (including swinging up) of IPC system using zeroing-gradient method. Nonlinear Dyn. 89, 1–25 (2017)

    Article  MATH  Google Scholar 

  4. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Rob. 21, 505–513 (2005)

    Article  Google Scholar 

  5. Takei, T., Imamura, R., Yuta, S.: Baggage transportation and navigation by a wheeled inverted pendulum mobile robot. IEEE Trans. Ind. Electron. 56, 3985–3994 (2009)

    Article  Google Scholar 

  6. Shiroma, N., Matsumoto, O., Tani, K.: Cooperative behavior of a mechanically unstable mobile robot for object transportation. JSME Int. J. Ser. C 42, 965–973 (1999)

    Article  Google Scholar 

  7. Yufka, A., Ozkan, M.: Formation-based control scheme for cooperative transportation by multiple mobile robots. Int. J. Adv. Rob. Syst. 12, 120 (2015)

    Article  Google Scholar 

  8. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18, 813–825 (2002)

    Article  Google Scholar 

  9. Loria, A., Dasdemir, J., Jarquin, N.A.: Leader-follower formation and tracking control of mobile robots along straight paths. IEEE Trans. Control Syst. Technol. 24, 727–732 (2016)

    Article  Google Scholar 

  10. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: A geometric characterization of leader-follower formation control. In: IEEE International Conference on Robotics and Automation, pp. 2397–2402 (2007)

  11. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44, 1343–1349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45, 2605–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sarkar, S., Kar, I.N.: Formation of multiple groups of mobile robots: multi-timescale convergence perspective. Nonlinear Dyn. 85, 2611–2627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mastellone, S., Meja, J.S., Stipanovic, D.M., Spong, M.W.: Formation control and coordinated tracking via asymptotic decoupling for Lagrangian multi-agent systems. Automatica 47, 2355–2363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cho, H., Yu, A.: New approach to satellite formation-keeping: exact solution to the full nonlinear problem. J. Aerosp. Eng. 22, 445–455 (2009)

    Article  Google Scholar 

  16. Cho, H., Udwadia, F.E.: Explicit solution to the full nonlinear problem for satellite formation-keeping. Acta Astronaut. 67, 369–387 (2010)

    Article  Google Scholar 

  17. Udwadia, F., Cho, H.: New solutions to the exact formation-keeping control of satellites with attitude constraints. In: Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments, pp. 1423–1432 (2012)

  18. Udwadia, F.E., Kalaba, R.E.: New Directions in the Control of Nonlinear Mechanical Systems. Mechanics and Control, pp. 81–84. Springer, New York (1994)

    MATH  Google Scholar 

  19. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  20. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. Math. Phys. Eng. Sci. 459, 1783–1800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Udwadia, F.E.: On constrained motion. Appl. Math. Comput. 164, 313C320 (2005)

  22. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. Math. Phys. Eng. Sci. 464, 2341–2363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Udwadia, F.E., Koganti, P.B.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82, 547–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cho, H., Udwadia, F.E.: Explicit control force and torque determination for satellite formation-keeping with attitude requirements. J. Guid. Control Dyn. 36, 589C605 (2013)

    Article  Google Scholar 

  25. Sun, H., Zhao, H., Zhen, S., Huang, K., Zhao, F., Chen, X., Chen, Y.H.: Application of the Udwadia-Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83, 389–400 (2016)

    Article  MathSciNet  Google Scholar 

  26. Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 468, 395C414 (2011)

    Google Scholar 

  27. Schutte, A., Udwadia, F.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78, 021018-1–021018-11 (2011)

    Article  Google Scholar 

  28. Huang, J., Chen, Y.H., Zhong, Z.: Udwadia-kalaba approach for parallel manipulator dynamics. J. Dyn. Syst. Meas. Contr. 135, 061003-1–061003-11 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng He.

Additional information

The research is founded by Key Science and Technology Program of Anhui Province (CN), Program Number is 1064a0902181.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Huang, K., Chen, X. et al. Transportation control of cooperative double-wheel inverted pendulum robots adopting Udwadia-control approach. Nonlinear Dyn 91, 2789–2802 (2018). https://doi.org/10.1007/s11071-018-4046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4046-z

Keywords

Navigation