Skip to main content
Log in

Controlling and stabilizing unpredictable behavior of metabolic reactions and carcinogenesis in biological systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Developing new designs and optimization of the cancer treatment is extremely important task. In this work, the nonlinear multi-scale diffusion cancer invasion model that describes the interactions of the tumor cells, matrix-metalloproteinases, matrix-degradative enzymes and oxygen is studied. The conditions under which the cancerous biological system exhibits chaotic behavior were obtained by means of the method based on wandering trajectories analysis. Regions of parameters leading to carcinogenesis in the biological system studied were found in control parameter planes ‘number of tumor cells versus diffusion saturation level.’ Significant influence of the biological system initial state to carcinogenesis was ascertained and illustrated by regions in phase planes of initial conditions. Evolution of all regions obtained is presented depending on glucose level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vogelzang, N.J., Benovitz, S.I., et al.: Clinical cancer advances 2011: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 30, 88–109 (2012)

    Article  Google Scholar 

  2. Fraass, B.A., Moran, J.M.: Quality, technology and outcomes: evolution and evaluation of new treatments and/or new technology. Semin. Radiat. Oncol. 22, 3–10 (2012)

    Article  Google Scholar 

  3. Liu, D., Ajlouni, M., Jin, J.-Y., et al.: Analysis of outcomes in radiation oncology: an integrated computational platform. Med. Phys. J. 36(5), 1680–1689 (2009)

    Article  Google Scholar 

  4. Lambin, P., Stiphout, R.G.P.M., Starmans, M.H.W., et al.: Predicting outcomes in radiation oncology multifactorial decision support systems. Nat. Rev. Clin. Oncol. 10(1), 27–40 (2013)

    Article  Google Scholar 

  5. Oh, J.H., Kerns, S., Ostrer, H., et al.: Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci. Rep. 7, 1–10 (2017)

    Article  Google Scholar 

  6. Incoronato, M., Aiello, M., Infante, T., et al.: Radiogenomic analysis of oncological data: a technical survey. Int. J. Mol. Sci. 18(4), 805 (2017)

    Article  Google Scholar 

  7. Baumann, M., Petersen, C.: TCP and NTCP: a basic introduction. Rays 30(2), 99–104 (2005)

    Google Scholar 

  8. Baumann, M., Petersen, C., Krause, M.: TCP and NTCP in preclinical and clinical research in Europe. Rays 30(2), 121–126 (2005)

    Google Scholar 

  9. Bentzen, S.M., Constine, L.S., Deasy, J.O., et al.: Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 76(3), S3–S9 (2010)

    Article  Google Scholar 

  10. Marks, L.B., Yorke, E.D., Jackson, A., et al.: Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 76(3), S10–S19 (2010)

    Article  Google Scholar 

  11. Miller, E.D., Fisher, J.L., Haglund, K.E., et al.: The addition of chemotherapy to radiation therapy improves survival in elderly patients with stage III non-small cell lung cancer. J. Thorac. Oncol. 13(3), 426–435 (2018). https://doi.org/10.1016/j.jtho.2017.11.135

    Article  Google Scholar 

  12. Nakamichi, S., Horinouchi, H., Asao, T., et al.: Comparison of radiotherapy and chemoradiotherapy for locoregional recurrence of non-small-cell lung cancer developing after surgery. Clin Lung Cancer. 18(6), e441–e448 (2017). https://doi.org/10.1016/j.cllc.2017.05.005

    Article  Google Scholar 

  13. Zhu, J., Li, R., Tiselius, E., et al.: Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst Rev. 12, CD011300 (2017). https://doi.org/10.1002/14651858.CD011300.pub2

    Google Scholar 

  14. Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modelling of tumor invasion and metastasis. J. Theor. Med. 2, 129–154 (2000)

    Article  MATH  Google Scholar 

  15. Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion. Math. Med. Biol. 22, 163–186 (2005)

    Article  MATH  Google Scholar 

  16. Komarova, N.L.: Building stochastic models for cancer growth and treatment. In: Deisboeck, T., Stamatakos, G.S. (eds.) Multiscale Cancer Modeling, pp. 339–358. CRC Press, London, New York (2010)

    Chapter  Google Scholar 

  17. Ivancevic, T.T., Bottema, M.J., Jain, L.C.: A theoretical model of chaotic attractor in tumor growth and metastasis. Cornell University Library’s arXiv: 0807.4272, pp. 1–17 (2008)

  18. Harney, M., Yim, W.: Chaotic attractors in tumor growth and decay: a differential equation model. In: Vlamos P., Alexiou A. (eds.) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol. 820, pp. 193–206. Springer, Cham (2014)

  19. Harney, M., Seal, J.: Design of a compensator network to stabilize chaotic tumor growth. Adv. Exp. Med. Biol. 988, 31–37 (2017). https://doi.org/10.1007/978-3-319-56246-9_2

    Article  Google Scholar 

  20. Beerenwinkel, N., Schwarz, R.F., Gerstung, M., Markowetz, F.: Cancer evolution: mathematical models and computational inference. Syst. Biol. 64(1), e1–e25 (2015). https://doi.org/10.1093/sysbio/syu081

    Article  Google Scholar 

  21. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    Article  MATH  Google Scholar 

  22. Ahmed, E.: Fractals and chaos in cancer models. Int. J. Theor. Phys. 32(2), 353–355 (1993)

    Article  MathSciNet  Google Scholar 

  23. Dalgleish, A.: The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines. Q. J. Med. 92, 347–359 (1999)

    Article  Google Scholar 

  24. Crawford, S.A.: A “chaotic” approach to the treatment of advanced cancer. J. Tradit. Med. Clin. Nat. 6(3), 1–5 (2017). https://doi.org/10.4172/25734555.1000232

    Google Scholar 

  25. Maddali, R.K., Ahluwalia, D., Chaudhuri, A., Hassan, S.S.: Dynamics of a three dimensional chaotic cancer model. Int. J. Math. Trends Technol. 53(5), 353–368 (2018). https://doi.org/10.14445/22315373/IJMTT-V53

    Article  Google Scholar 

  26. Itik, M., Banks, S.P.: Chaos in a three-dimensional cancer model. Int. J. Bifurc. Chaos 20(1), 71–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Berezovoj, V.P., Bolotin, Y.L., Dzyubak, A.P., et al.: Nuclear stochastic resonance. J. Exp. Theor. Phys. Lett. 74, 411–414 (2001)

    Article  Google Scholar 

  28. Berezovoj, V.P., Bolotin, Y.L., Dzyubak, O.P., et al.: Stochastic resonance in a periodically modulated dissipative nuclear dynamics. Fermilab Report, Jan 2001 FERMILAB-CONF-01-009-T. http://lss.fnal.gov/archive/2001/conf/Conf-01-009-T.pdf

  29. Radunskaya, A., Kim, R., Woods II, T.: Mathematical modeling of tumor immune interactions: a closer look at the role of a PD-L1 inhibitor in cancer immunotherapy. Spora J. Biomath. 4(1), 25–41 (2018). https://doi.org/10.30707/SPORA4.1Radunskaya

    Google Scholar 

  30. López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: Dynamics ofthe cell-mediated immune response to tumour growth. Philos. Trans. A Math. Phys. Eng. Sci. 375, 1–14 (2017). https://doi.org/10.1098/rsta.2016.0291

    Article  MATH  Google Scholar 

  31. López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: Destruction of solid tumors by immune cells. Commun. Nonlinear Sci. Numer. Simul. 44, 390–403 (2017). https://doi.org/10.1016/j.cnsns.2016.08.020

    Article  MathSciNet  Google Scholar 

  32. López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: Decay dynamics of tumors. PLoS One 11(6), 1–15 (2016). https://doi.org/10.1371/journal.pone.0157689

    Article  Google Scholar 

  33. Awrejcewicz, J., Dzyubak, L.P.: Chaos caused by hysteresis and saturation phenomenon in 2-dof vibrations of the rotor supported by the magneto-hydrodynamic bearing. Int. J. Bifurc. Chaos 15(6), 2041–2055 (2011)

    Article  MATH  Google Scholar 

  34. Awrejcewicz, J., Dzyubak, L.P.: Modelling, chaotic behavior and control of dissipation properties of hysteretic systems. In: Elhadj, Z. (ed.) Models and Applications of Chaos Theory in Modern Sciences, pp. 645–667. CRC Press Taylor & Francis Group, Boca Raton (2011)

    Chapter  Google Scholar 

  35. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R.: Molecular Biology of the Gene. Pearson, New York (2014)

    Google Scholar 

  36. Prigogine, I., Stengers, I.: Order Out of Chaos. Heinemann, London (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larysa Dzyubak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzyubak, L., Dzyubak, O. & Awrejcewicz, J. Controlling and stabilizing unpredictable behavior of metabolic reactions and carcinogenesis in biological systems. Nonlinear Dyn 97, 1853–1866 (2019). https://doi.org/10.1007/s11071-018-04737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-04737-1

Keywords

Navigation