Skip to main content
Log in

On the vibrational analysis for the motion of a harmonically damped rigid body pendulum

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present work outlines the investigation of a damped harmonically excited spring pendulum which moves in an elliptic path with constant angular velocity. A rigid body is attached with a damped spring and has a linear force acted along the pendulum arm. The multiple scales technique was utilized to obtain the asymptotic solutions for the governing equations of motion up to the third approximation. Some resonance cases have been classified in view of the attained modulation equations. The solvability conditions for the steady-state solutions are obtained. The time history of the attained solutions is represented graphically and compared with the numerical solutions of the governing equations of motion for suitable physical parameters of the considered dynamical model. Moreover, the resonance curves for these solutions are plotted for the same parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Strogatz, S.H.: Nonlinear Dynamics and Choas. Westview Press, Boulder (2014)

    Google Scholar 

  2. Chirikov, B.V.: Resonance processes in magnetic traps. J. Nucl. Energy C Plasma Phys. 1, 253–260 (1960)

    Article  Google Scholar 

  3. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    Article  MathSciNet  Google Scholar 

  4. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, New York (1992)

    Book  MATH  Google Scholar 

  5. Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, part I: transversally tuned absorber and negative \(G\varphi ^{n}\) feedback. Math. Comput. Appl. 11(2), 137–149 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, part II: longitudinal tuned absorber and negative \(G\ddot{\varphi }\) and \(G\varphi ^{n}\) feedback. Math. Comput. Appl. 11(2), 151–162 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Eissa, M.: Vibration reduction of a three DOF non-linear spring pendulum. Commun. Nonlinear Sci. Numer. Simul. 13, 465–488 (2008)

    Article  MATH  Google Scholar 

  8. Lee, W.K., Hsu, C.S.: A global analysis of an harmonically excited spring-pendulum system with internal resonance. J. Sound Vib. 171(3), 335–359 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tongue, B.H., Gu, K.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. 55, 461–466 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilat, A.: Numerical Methods for Engineers and Scientists. Wiley, New York (2013)

    Google Scholar 

  11. Agrawal, A.K., Yang, J.N., Wu, J.C.: Non-linear control strategies for Duffing systems. Int. J. Non-Linear Mech. 33(5), 829–841 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Amer, T.S., Bek, M.A.: Chaotic responses of a harmonically excited spring pendulum moving in circular path. Nonlinear Anal. RWA 10(5), 3196–3202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Belyakov, A.O.: On rotational solutions for elliptically excited pendulum. Phys. Lett. A 375, 2524–2530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ismail, A.I.: Relative periodic motion of a rigid body pendulum on an ellipse. J. Aerosp. Eng. 22(1), 67–77 (2009)

    Article  Google Scholar 

  15. Nayfeh, A.H.: Perturbations Methods. Wiley, Weinheim (2004)

    Google Scholar 

  16. Amer, T.S.: The dynamical behavior of a rigid body relative equilibrium position. Adv. Math. Phys. (2017) https://doi.org/10.1155/2017/8070525

  17. Starosta, R., Kamińska, G., Awrejcewicz, J.: Asymptotic analysis of kinematically excited dynamical systems near resonances. Nonlinear Dyn. 68, 459–469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Amer, T.S., Bek, M.A., Hamada, I.S.: On the motion of harmonically excited spring pendulum in elliptic path near resonances. Adv. Math. Phys. (2016) https://doi.org/10.1155/2016/8734360

  19. Starosta, R., Kamińsk, G., Awrejcewicz, J.: Parametric and external resonances in kinematically and externally excited nonlinear spring pendulum. Int. J. Bifurc. Chaos 21, 3013–3021 (2011)

    Article  MATH  Google Scholar 

  20. Awrejcewicz, J., Starosta, R., Kamińska, G.: Asymptotic analysis and limiting phase trajectories in the dynamics of spring pendulum. In: Applied Non-Linear Dynamical Systems, vol. 93 of Springer Proceedings in Mathematics and Statistics, pp. 161–173 (2014)

  21. Awrejcewicz, J., Starosta, R., Kamińska, G.: Asymptotic analysis of resonances in nonlinear vibrations of the 3-dof pendulum. Differ. Equ. Dyn. Syst. 21, 123–140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kesimli, A., Özkaya, E., Bagdatli, S.M.: Nonlinear vibrations of spring-supported axially moving string. Nonlinear Dyn. 81, 1523–1534 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Burd, V., Matveev, V.N.: Asymptotic Methods on an Infinite Interval in Problems of Nonlinear Mechanics. Yaroslavl’:Yaroslavl’ Univ. (1985) (in Russian)

  24. Neishtadt, A.I., Sheng, K.: Bifurcations of phase portraits of pendulum with vibrating suspension point. Commun. Nonlinear Sci. Numer. Simul. 47, 71–80 (2017)

    Article  MathSciNet  Google Scholar 

  25. Chen, H., Fang, Y., Sun, N.: A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3531-0

    MathSciNet  Google Scholar 

  26. Rajasekar, S., Sanjuan, M.A.: Nonlinear Resonances. Springer, Berlin (2016)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Amer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, T.S., Bek, M.A. & Abouhmr, M.K. On the vibrational analysis for the motion of a harmonically damped rigid body pendulum. Nonlinear Dyn 91, 2485–2502 (2018). https://doi.org/10.1007/s11071-017-4027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4027-7

Keywords

Navigation