Skip to main content
Log in

Demkov–Kunike transition dynamics in a nonlinear two-level system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the Demkov–Kunike transition in a nonlinear two-level system. We find that nonlinearity can dramatically affect the transition dynamics. We show the asymmetry of transition probability in different initial modes. For the weak interaction, the transition probability could be quickly stabilized at 100% in the initial state \(\psi _{1}\) and could be optionally obtained from zero to 100% over a very wide range of external parameters in the initial state \(\psi _{2}\). For the strong interaction, the quantum transition of the two states could be completely blocked. In the adiabatic case, for different initial modes we analyze the asymmetry of transition probability by the eigenenergy level structure of the system. We also show the influence of static detuning on transition probability. Possible applications of our theory to actual physical systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McMahon, R.J.: Chemical reactions involving quantum tunneling. Science 299, 833–834 (2003)

    Article  Google Scholar 

  2. Balantekin, A.B., Takigawa, N.: Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77–100 (1998)

    Article  Google Scholar 

  3. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  4. Zhao, L.C., Ling, L.M., Yang, Z.Y., Yang, W.L.: Tunneling dynamics between atomic bright solitons. Nonlinear Dyn. 88, 2957–2967 (2017)

    Article  MathSciNet  Google Scholar 

  5. Landau, L.D.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion. 2, 46–51 (1932)

    Google Scholar 

  6. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137, 696–702 (1932)

    Article  MATH  Google Scholar 

  7. Stückelberg, E.C.G.: Theory of inelastic collisions between atoms (theory of inelastic collisions between atoms, using two simultaneous differential equations). Helv. Phys. Acta 5, 369–422 (1932)

    Google Scholar 

  8. Majorana, E.: Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43–50 (1932)

    Article  MATH  Google Scholar 

  9. Rosen, N., Zener, C.: Double Stern–Gerlach experiment and related collision phenomena. Phys. Rev. 40, 502–507 (1932)

    Article  MATH  Google Scholar 

  10. Allen, L., Eberly, J.H.: Optical Resonances and Two-Level Atoms. Wiley, New York (1975)

    Google Scholar 

  11. Allen, L., Eberly, J.H.: Optical Resonances and Two-Level Atoms. Dover, New York (1987)

    Google Scholar 

  12. Hioe, F.T.: Solution of Bloch equations involving amplitude and frequency modulations. Phys. Rev. A 30, 2100–2103 (1984)

    Article  Google Scholar 

  13. Bambini, A., Berman, P.R.: Analytic solutions to the two-state problem for a class of coupling potentials. Phys. Rev. A 23, 2496–2501 (1981)

    Article  MathSciNet  Google Scholar 

  14. Simeonov, L.S., Vitanov, N.V.: Exactly solvable two-state quantum model for a pulse of hyperbolic-tangent shape. Phys. Rev. A 89, 043411 (2014)

    Article  Google Scholar 

  15. Lacour, X., Guérin, S., Yatsenko, L.P., Vitanov, N.V., Jauslin, H.R.: Uniform analytic description of dephasing effects in two-state transitions. Phys. Rev. A 75, 033417 (2007)

    Article  Google Scholar 

  16. Demkov, Y.N., Kunike, M.: Hypergeometric models for the two-state approximation in collision theory. Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969)

    MathSciNet  Google Scholar 

  17. Suominen, K.A., Garraway, B.M.: Population transfer in a level-crossing model with two time scales. Phys. Rev. A 45, 374–386 (1992)

    Article  Google Scholar 

  18. Ota, Y., Kondo, Y.: Composite pulses in NMR as nonadiabatic geometric quantum gates. Phys. Rev. A 80, 024302 (2009)

    Article  Google Scholar 

  19. Král, P., Thanopulos, I., Shapiro, M.: Colloquium: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)

    Article  Google Scholar 

  20. Ruschhaupt, A., Muga, J.G.: Adiabatic interpretation of a two-level atom diode: a laser device for unidirectional transmission of ground-state atoms. Phys. Rev. A 73, 013608 (2006)

    Article  Google Scholar 

  21. Pereira Dos Santos, F., Marion, H., Bize, S., Sortais, Y., Clairon, A., Salomon, C.: Controlling the cold collision shift in high precision atomic interferometry. Phys. Rev. Lett. 89, 233004 (2002)

    Article  Google Scholar 

  22. Weitz, M., Young, B.C., Chu, S.: Atomic interferometer based on adiabatic population transfer. Phys. Rev. Lett. 73, 2563–2566 (1994)

    Article  Google Scholar 

  23. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)

    Article  Google Scholar 

  24. Torosov, B.T., Vitanov, N.V.: Coherent control of a quantum transition by a phase jump. Phys. Rev. A 76, 053404 (2007)

    Article  Google Scholar 

  25. Paul, K., Sarma, A.K.: Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme. Phys. Rev. A 91, 053406 (2015)

    Article  Google Scholar 

  26. Jona-Lasinio, M., Morsch, O., Cristiani, M., Malossi, N., Mller, J.H., Courtade, E., Anderlini, M., Arimondo, E.: Asymmetric Landau–Zener tunneling in a periodic potential. Phys. Rev. Lett. 91, 230406 (2003)

    Article  Google Scholar 

  27. Jona-Lasinio, M., Morsch, O., Cristiani, M., Malossi, N., Mller, J.H., Courtade, E., Anderlini, M., Arimondo, E.: Nonlinear effects in periodic potentials: asymmetric Landau–Zener tunnelling of a Bose–Einstein condensate. Laser Phys. Lett. 1, 147 (2004)

    Article  Google Scholar 

  28. Chen, Y.A., Huber, S.D., Trotzky, S., Bloch, I., Altman, E.: Many-body Landau–Zener dynamics in coupled 1d bose liquids. Nature Phys. 7, 61 (2011)

    Article  Google Scholar 

  29. Morales-Molina, L., Arvalo, E.: Accurate control of a Bose–Einstein condensate by managing the atomic interaction. Phys. Rev. A 82, 7815 (2010)

    Article  Google Scholar 

  30. Trimborn, F., Witthaut, D., Kegel, V., Korsch, H.J.: Nonlinear Landau–Zener tunneling in quantum phase space. New J. Phys. 12, 053010 (2010)

    Article  Google Scholar 

  31. Wu, B., Niu, Q.: Nonlinear Landau–Zener tunneling. Phys. Rev. A 61, 023402 (2000)

    Article  Google Scholar 

  32. Liu, J., Wu, B., Niu, Q.: Nonlinear evolution of quantum states in the adiabatic regime. Phys. Rev. Lett. 90, 170404 (2003)

    Article  Google Scholar 

  33. Wu, B., Liu, J.: Commutability between the semiclassical and adiabatic limits. Phys. Rev. Lett. 96, 020405 (2006)

    Article  Google Scholar 

  34. Chen, X., Ban, Y., Hegerfeldt, G.C.: Time-optimal quantum control of nonlinear two-level systems. Phys. Rev. A 94, 023624 (2016)

    Article  Google Scholar 

  35. Dou, F.Q., Li, S.C., Cao, H.: Combined effects of particle interaction and nonlinear sweep on Landau–Zener transition. Phys. Lett. A 376, 51–55 (2011)

    Article  Google Scholar 

  36. Ye, D.F., Fu, L.B., Liu, J.: Rosen–Zener transition in a nonlinear two-level system. Phys. Rev. A 77, 013402 (2008)

    Article  Google Scholar 

  37. Fu, L.B., Ye, D.F., Lee, C.H., Zhang, W.P., Liu, J.: Adiabatic Rosen–Zener interferometry with ultracold atoms. Phys. Rev. A 80, 013619 (2009)

    Article  Google Scholar 

  38. Li, S.C., Fu, L.B., Duan, W.S., Liu, J.: Nonlinear Ramsey interferometry with Rosen–Zener pulses on a two-component Bose–Einstein condensate. Phys. Rev. A 78, 063621 (2008)

    Article  Google Scholar 

  39. Ishkhanyan, A.M., Joulakian, B., Suominen, K.A.: Two strong nonlinearity regimes in cold molecule formation. Eur. Phys. J. D 48, 397–404 (2008)

    Article  Google Scholar 

  40. Sokhoyana, R.S., Azizbekyana, H.H., Leroyb, C., Ishkhanyana, A.M.: Demkov–Kunike model for cold atom association: weak interaction regime. J. Contemp. Phys. (Armenian Ac. Sci.) 44(6), 272–277 (2009)

    Article  Google Scholar 

  41. Sokhoyan, R.S.: Demkov–Kunike model in cold molecule formation: the fast resonance sweep regime of the strong interaction limit. J. Contemp. Phys. (Armenian Ac. Sci.) 45(2), 51–57 (2010)

    Article  Google Scholar 

  42. Dou, F.Q., Cao, H., Liu, J., Fu, L.B.: High-fidelity composite adiabatic passage in nonlinear two-level systems. Phys. Rev. A 93, 043419 (2016)

    Article  Google Scholar 

  43. Wu, B., Niu, Q.: Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability. New J. Phys. 5, 104 (2003)

    Article  Google Scholar 

  44. Paloviitat, A., Suominent, K.A., Stenholm, S.: Molecular excitation by chirped pulses. J. Phys. B: At. Mol. Opt. Phys. 28, 1463–1474 (1995)

    Article  Google Scholar 

  45. Larson, J., Stenholm, S.: Adiabatic state preparation in a cavity. J. Mod. Opt. 50, 1663–1678 (2003)

    Article  MATH  Google Scholar 

  46. Stamper-Kurn, D.M., Andrews, M.R., Chikkatur, A.P., Inouye, S., Miesner, H.J., Stenger, J., Ketterle, W.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)

    Article  Google Scholar 

  47. Stenger, J., Inouye, S., Andrews, M.R., Miesner, H.J., Stamper-Kurn, D.M., Ketterle, W.: Strongly enhanced inelastic collisions in a Bose–Einstein condensate near Feshbach resonances. Phys. Rev. Lett. 82, 2422–2425 (1999)

    Article  Google Scholar 

  48. Guérin, S., Hakobyan, V., Jauslin, H.R.: Optimal adiabatic passage by shaped pulses: efficiency and robustness. Phys. Rev. A 84, 013423 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grants Nos. 11547046, 11665020 and 11747018), the Natural Science Foundation of Gansu Province, China (Grants Nos. 1606RJZA081 and 17JR5RA070), and the Scientific Research Foundation of NWNU (Grant No. NWNU-LKQN-16-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Quan Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, P., Wang, WY., Sun, JA. et al. Demkov–Kunike transition dynamics in a nonlinear two-level system. Nonlinear Dyn 91, 2477–2484 (2018). https://doi.org/10.1007/s11071-017-4026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4026-8

Keywords

Navigation