Skip to main content
Log in

Revival of oscillations via common environment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We explore the behavior of groups of Landau-Stuart oscillators, with diffusive mean-field coupling within the group and indirect inter-group coupling mediated by a common medium. Interestingly, we find that oscillations are revived in groups with fixed point dynamics by coupling to an oscillatory group through the common medium. We also investigate groups of Hindmarsh–Rose model neurons and demonstrate the emergence of spiking in indirectly coupled inactive neuronal groups, indicating the vital role of the common medium in restoring oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharma, A., Shrimali, M.D.: Amplitude death with mean-field diffusion. Phys. Rev. E 85, 057204 (2012)

    Article  Google Scholar 

  2. Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010)

    Article  Google Scholar 

  3. Banerjee, T., Ghosh, D.: Transition from amplitude to oscillation death under mean-field diffusive coupling. Phys. Rev. E 89, 052912 (2014)

    Article  Google Scholar 

  4. Kamal, N.K., Sharma, P.R., Shrimali, M.D.: Oscillation suppression in indirectly coupled limit cycle oscillators. Phys. Rev. E 92, 022928 (2015)

    Article  MathSciNet  Google Scholar 

  5. Sharma, A., Sharma, P.R., Shrimali, M.D.: Amplitude death in nonlinear oscillators with indirect coupling. Phys. Lett. A 376, 1562 (2012)

    Article  MATH  Google Scholar 

  6. Karnatak, R., Ramaswamy, R., Feudel, U.: Conjugate coupling in ecosystems: cross-predation stabilizes food webs. Chaos Solitons Fractals 68, 48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kiss, I.Z., Hudson, J.L.: Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator. Phys. Rev. E 64, 046215 (2001)

    Article  Google Scholar 

  8. Ermentrout, G.B., Kopell, N.: Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50, 125 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gallego, B., Cessi, P.: Decadal variability of two oceans and an atmosphere. J. Clim. 14, 2815 (2001)

    Article  Google Scholar 

  10. Prasad, A.: Amplitude death in coupled chaotic oscillators. Phys. Rev. E 72, 056204 (2005)

    Article  MathSciNet  Google Scholar 

  11. Zou, W., Senthilkumar, D., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Duan, J., Kurths, J.: Restoration of rhythmicity in diffusively coupled dynamical networks. Nat. Commun. 6, 7709 (2015)

    Article  Google Scholar 

  12. Zou, W., Senthilkumar, D., Zhan, M., Kurths, J.: Reviving oscillations in coupled nonlinear oscillators. Phys. Rev. Lett. 111, 014101 (2013)

    Article  Google Scholar 

  13. Ghosh, D., Banerjee, T., Kurths, J.: Revival of oscillation from mean-field-induced death: theory and experiment. Phys. Rev. E 92, 052908 (2015)

    Article  Google Scholar 

  14. Zou, W., Yao, C., Zhan, M.: Eliminating delay-induced oscillation death by gradient coupling. Phys. Rev. E 82, 056203 (2010)

    Article  Google Scholar 

  15. Kar, S., Ray, D.S.: Collapse and revival of glycolytic oscillation. Phys. Rev. Lett. 90, 238102 (2003)

    Article  Google Scholar 

  16. Cao, H., Huang, R.K., Yamamoto, Y., Jiang, S., Machida, S., Takiguchi, Y.: Collapse and revival of the oscillation of microcavity emission and its phase spectrum. Phys. Stat. Solidi 164, 29 (1997)

    Article  Google Scholar 

  17. Sneyd, J., Tsaneva-Atanasova, K., Yule, D.I., Thompson, J.L., Shuttleworthi, T.J.: Control of calcium oscillations by membrane fluxes. Proc. Natl. Acad. Sci. USA 101, 1392 (2004)

    Article  Google Scholar 

  18. Brgers, C., Epstein, S., Kopell, N.J.: Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proc. Natl. Acad. Sci. USA 105, 18023 (2008)

    Article  Google Scholar 

  19. Sawai, S., Maeda, Y., Sawada, Y.: Spontaneous symmetry breaking turing-type pattern formation in a confined Dictyostelium cell mass. Phys. Rev. Lett. 85, 2212–2215 (2000)

    Article  Google Scholar 

  20. Toth, R., Taylor, A.F., Tinsley, M.R.: Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B 110, 10170–10176 (2006)

    Article  Google Scholar 

  21. Kondo, S., Miura, T.: Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Richard, P., Bakker, B.M., Teusink, B., Dam, K.V., Westerhoff, H.V.: Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur. J. Biochem. 235, 238 (1996)

    Article  Google Scholar 

  23. Shockley, K., Butwill, M., Zbilut Jr., J.P., Webber, C.L.: Cross recurrence quantification of coupled oscillators. Phys. Lett. A 305, 59 (2002)

    Article  MATH  Google Scholar 

  24. Resmi, V., Ambika, G., Amritkar, R.E.: Synchronized states in chaotic systems coupled indirectly through a dynamic environment. Phys. Rev. E 81, 046216 (2010)

    Article  Google Scholar 

  25. Majhi, S., Bera, B.K., Bhowmick, S.K., Ghosh, D.: Restoration of oscillation in network of oscillators in presence of direct and indirect interactions. Phys. Lett. A 380, 3617 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Ser. B 221, 87 (1984)

    Article  Google Scholar 

  27. Mamat, M., Kueniawan, P.W., Kartono, A., Salleh, Z.: Mathematical model of dynamics and synchronization of coupled neurons using Hindmarsh–Rose model. Appl. Math. Sci. 6, 2489 (2012)

    MATH  Google Scholar 

  28. Checco, P., Biey, M., Righero, M., Kocarev, L.: Synchronization and bifurcations in networks of coupled Hindmarsh–Rose neurons. In: IEEE International Symposium on Circuits and Systems, New Orleans, LA, pp. 1541–1544 (2007)

  29. Perin, R., Berger, T.K., Markram, H.: A synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. USA 108, 5419 (2011)

    Article  Google Scholar 

  30. Litwin-Kumar, A., Doiron, B.: Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498 (2012)

    Article  Google Scholar 

  31. Rosenblum, M., Pikovsky, A.: Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemp. Phys. 44, 401–416 (2003)

    Article  Google Scholar 

  32. Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R.H.: Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381 (2004)

    Article  Google Scholar 

  33. Steinlein, O.K., Noebels, J.L.: Ion channels and epilepsy in man and mouse. Curr. Opin. Genet. Dev. 10, 286 (2000)

    Article  Google Scholar 

  34. Kagana, B.L., Hirakura, Y., Azimov, R., Azimova, R., Lin, M.C.: The channel hypothesis of Alzheimer’s disease: current status. Pepetides 23, 1311 (2002)

    Article  Google Scholar 

  35. Ozer, M., Perc, M., Uzuntarla, M.: Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin–Huxley neurons. Europhys. Lett. 86, 40008 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from DST, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Dev Shrimali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Sharma, A., Shrimali, M.D. et al. Revival of oscillations via common environment. Nonlinear Dyn 91, 2219–2225 (2018). https://doi.org/10.1007/s11071-017-4010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4010-3

Keywords

Navigation