Stability of solitons in time-modulated two-dimensional lattices


We develop stability analysis for matter-wave solitons in a two-dimensional (2D) Bose–Einstein condensate loaded in an optical lattice (OL), to which periodic time modulation is applied, in different forms. The stability is studied by dint of the variational approximation and systematic simulations. For solitons in the semi-infinite gap, well-defined stability patterns are produced under the action of the attractive nonlinearity, clearly exhibiting the presence of resonance frequencies. The analysis is reported for several time-modulation formats, including the case of in-phase modulations of both quasi-1D sublattices, which build the 2D square-shaped OL, and setups with asynchronous modulation of the sublattices. In particular, when the modulations of two sublattices are phase-shifted by \(\delta =\pi /2\), the stability map is not improved, as the originally well-structured stability pattern becomes fuzzy and the stability at high modulation frequencies is considerably reduced. Mixed results are obtained for anti-phase modulations of the sublattices (\(\delta =\pi \)), where extended stability regions are found for low modulation frequencies, but for high frequencies the stability is weakened. The analysis is also performed in the case of the repulsive nonlinearity, for solitons in the first finite bandgap. It is concluded that, even though stability regions may be found, distinct stability boundaries for the gap solitons cannot be identified clearly. Finally, the stability is also explored for vortex solitons of both the “square-shaped” and “rhombic” types (i.e., off- and on-site-centered ones).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Formation and propagation of matter-wave soliton trains. Nature 417, 150 (2002)

    Article  Google Scholar 

  2. 2.

    Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296, 1290 (2002)

    Article  Google Scholar 

  3. 3.

    Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Bright matter wave solitons in Bose–Einstein condensates. New J. Phys. 5(1), 73 (2003)

    Article  Google Scholar 

  4. 4.

    Cornish, S.L., Thompson, S.T., Wieman, C.E.: Formation of bright matter-wave solitons during the collapse of attractive Bose–Einstein condensates. Phys. Rev. Lett. 96, 170401 (2006)

    Article  Google Scholar 

  5. 5.

    Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259 (1998)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  7. 7.

    Morsch, O., Oberthaler, M.: Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179 (2006)

    Article  Google Scholar 

  8. 8.

    Efremidis, N.K., Hudock, J., Christodoulides, D.N., Fleischer, J.W., Cohen, O., Segev, M.: Two-dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003)

    Article  Google Scholar 

  9. 9.

    Yang, J., Musslimani, Z.H.: Fundamental and vortex solitons in a two-dimensional optical lattice. Opt. Lett. 28, 2094 (2003)

    Article  Google Scholar 

  10. 10.

    Musslimani, Z.H., Yang, J.: Self-trapping of light in a two-dimensional photonic lattice. J. Opt. Soc. Am. B 21, 973 (2004)

    Article  Google Scholar 

  11. 11.

    Baizakov, B.B., Malomed, B.A., Salerno, M.: Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A 70, 053613 (2004)

    Article  MATH  Google Scholar 

  12. 12.

    Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Y.V., Crasovan, L.-C., Torner, L.: Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. Phys. Rev. E 70, 055603(R) (2004)

    Article  Google Scholar 

  13. 13.

    Pethik, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  14. 14.

    Abdullaev, F.K., Baizakov, B.B., Darmanyan, S.A., Konotop, V.V., Salerno, M.: Nonlinear excitations in arrays of Bose–Einstein condensates. Phys. Rev. A 64, 043606 (2001)

    Article  Google Scholar 

  15. 15.

    Carusotto, I., Embriaco, D., La Rocca, G.C.: Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices. Phys. Rev. A 65, 053611 (2002)

    Article  Google Scholar 

  16. 16.

    Baizakov, B.B., Konotop, V.V., Salerno, M.: Regular spatial structures in arrays of Bose–Einstein condensates induced by modulational instability. J. Phys. B 35, 5105 (2002)

  17. 17.

    Louis, P.J.Y., Ostrovskaya, E.A., Savage, C.M., Kivshar, Y.S.: Bose–Einstein condensates in optical lattices: band-gap structure and solitons. Phys. Rev. A 67, 013602 (2003)

    Article  Google Scholar 

  18. 18.

    Efremidis, N.K., Christodoulides, D.N.: Lattice solitons in Bose–Einstein condensates. Phys. Rev. A 67, 063608 (2003)

    Article  Google Scholar 

  19. 19.

    Ostrovskaya, A., Kivshar, Y.S.: Matter-wave gap solitons in atomic band-gap structures. Phys. Rev. Lett. 90, 160407 (2003)

    Article  Google Scholar 

  20. 20.

    Gubeskys, A., Malomed, B.A., Merhasin, I.M.: Two-component gap solitons in two- and one-dimensional Bose–Einstein condensates. Phys. Rev. A 73, 023607 (2006)

    Article  Google Scholar 

  21. 21.

    Shi, Z., Wang, J., Chen, Z., Yang, J.: Linear instability of two-dimensional low-amplitude gap solitons near band edges in periodic media. Phys. Rev. A 78, 063812 (2008)

    Article  Google Scholar 

  22. 22.

    Eiermann, B., Anker, Th, Albiez, M., Taglieber, M., Treutlein, P., Marzlin, K.-P., Oberthaler, M.K.: Bright Bose–Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004)

    Article  Google Scholar 

  23. 23.

    Baizakov, B.B., Malomed, B.A., Salerno, M.: Multidimensional solitons in periodic potentials. Europhys. Lett. 63, 642 (2003)

    Article  MATH  Google Scholar 

  24. 24.

    Ostrovskaya, E.A., Kivshar, Y.S.: Photonic crystals for matter waves: Bose–Einstein condensates in optical lattices. Opt. Exp. 12, 19 (2004)

    Article  Google Scholar 

  25. 25.

    Ostrovskaya, E.A., Kivshar, Y.S.: Matter-wave gap vortices in optical lattices. Phys. Rev. Lett. 93, 160405 (2004)

    Article  Google Scholar 

  26. 26.

    Sakaguchi, H., Malomed, B.A.: Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps. J. Phys. B 37, 2225 (2004)

    Article  Google Scholar 

  27. 27.

    Neshev, D.N., Alexander, T.J., Ostrovskaya, E.A., Kivshar, Y.S., Martin, H., Makasyuk, I., Chen, Z.: Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004)

    Article  Google Scholar 

  28. 28.

    Fleischer, J.W., Bartal, G., Cohen, O., Manela, O., Segev, M., Hudock, J., Christodoulides, D.N.: Observation of vortex-ring “discrete” solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004)

    Article  Google Scholar 

  29. 29.

    Alexander, T.J., Sukhorukov, A.A., Kivshar, Y.S.: Asymmetric vortex solitons in nonlinear periodic lattices. Phys. Rev. Lett. 93, 063901 (2004)

    Article  Google Scholar 

  30. 30.

    Gubeskys, A., Malomed, B.A.: Spontaneous soliton symmetry breaking in two-dimensional coupled Bose–Einstein condensates supported by optical lattices. Phys. Rev. A 76, 043623 (2007)

    Article  Google Scholar 

  31. 31.

    Richter, T., Kaiser, F.: Anisotropic gap vortices in photorefractive media. Phys. Rev. A 76, 033818 (2007)

    Article  Google Scholar 

  32. 32.

    Mayteevarunyoo, T., Malomed, B.A., Baizakov, B.B., Salerno, M.: Matter-wave vortices and solitons in anisotropic optical lattices. Physica D 238, 1439 (2008)

    Article  MATH  Google Scholar 

  33. 33.

    Wang, J., Yang, J.: Families of vortex solitons in periodic media. Phys. Rev. A 77, 033834 (2008)

    Article  Google Scholar 

  34. 34.

    Ostrovskaya, E.A., Alexander, T.J., Kivshar, Y.S.: Generation and detection of matter-wave gap vortices in optical lattices. Phys. Rev. A 74, 023605 (2006)

    Article  Google Scholar 

  35. 35.

    Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)

    MATH  Google Scholar 

  36. 36.

    García-Ripoll, J.J., Pérez-García, V.M., Torres, P.: Extended parametric resonances in nonlinear schrdinger systems. Phys. Rev. Lett. 83, 1715 (1999)

    Article  Google Scholar 

  37. 37.

    García-Ripoll, J.J., Pérez-Garc ía, V.M.: Barrier resonances in Bose–Einstein condensation. Phys. Rev. A 59, 2220 (1999)

    Article  Google Scholar 

  38. 38.

    Abdullaev, F.Kh, Garnier, J.: Collective oscillations of one-dimensional Bose–Einstein gas in a time-varying trap potential and atomic scattering length. Phys. Rev. A 70, 053604 (2004)

    Article  Google Scholar 

  39. 39.

    Abdullaev, F.Kh, Galimzyanov, R.M., Brtka, M., Kraenkel, R.A.: Resonances in a trapped 3D Bose–Einstein condensate under periodically varying atomic scattering length. J. Phys. B 37, 3535 (2004)

    Article  Google Scholar 

  40. 40.

    Abdullaev, F.Kh, Galimzyanov, R.: The dynamics of bright matter wave solitons in a quasi one-dimensional Bose–Einstein condensate with a rapidly varying trap. J. Phys. B 36, 1099 (2003)

    Article  Google Scholar 

  41. 41.

    Baizakov, B., Filatrella, G., Malomed, B., Salerno, M.: Double parametric resonance for matter-wave solitons in a time-modulated trap. Phys. Rev. E 71, 036619 (2005)

    Article  Google Scholar 

  42. 42.

    Abdullaev, F.Kh, Caputo, J.G., Kraenkel, R.A., Malomed, B.A.: Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A 67, 013605 (2003)

    Article  Google Scholar 

  43. 43.

    Saito, H., Ueda, M.: Dynamically stabilized bright solitons in a two-dimensional Bose–Einstein condensate. Phys. Rev. Lett. 90, 040403 (2003)

    Article  Google Scholar 

  44. 44.

    Montesinos, G.D., Perez-Garcia, V.M., Torres, P.J.: Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: matter wave breathers. Physica D 191, 193 (2004)

  45. 45.

    Montesinos, G.D., Perez-Garcia, V.M., Michinel, H.: Stabilized two-dimensional vector solitons. Phys. Rev. Lett. 92, 133901 (2004)

    Article  Google Scholar 

  46. 46.

    Itin, A., Morishita, T., Watanabe, S.: Reexamination of dynamical stabilization of matter-wave solitons. Phys. Rev. A 74, 033613 (2006)

    Article  Google Scholar 

  47. 47.

    Staliunas, K., Longhi, S., De Valcárcel, G.J.: Faraday patterns in low-dimensional Bose–Einstein condensates. Phys. Rev. A 70, 011601(R) (2004)

    Article  Google Scholar 

  48. 48.

    Trippenbach, M., Matuszewski, M., Malomed, B.A.: Stabilization of three-dimensional matter-waves solitons in an optical lattice. Europhys. Lett. 70, 8 (2005)

    Article  Google Scholar 

  49. 49.

    Matuszewski, M., Infeld, E., Malomed, B.A., Trippenbach, M.: Fully three dimensional breather solitons can be created using Feshbach resonances. Phys. Rev. Lett. 95, 050403 (2005)

    Article  Google Scholar 

  50. 50.

    Kevrekidis, P.G., Theocharis, G., Frantzeskakis, D.J., Malomed, B.A.: Feshbach resonance management for Bose–Einstein condensates. Phys. Rev. Lett. 90, 230401 (2003)

    Article  Google Scholar 

  51. 51.

    Sabari, S., Raja, R., Porsezian, K., Muruganandam, P.: Stability of trapless Bose–Einstein condensates with two-and three-body interactions. J. Phys. B At. Mol. Opt. Phys. 43, 125302 (2010)

    Article  Google Scholar 

  52. 52.

    Mayteevarunyoo, T., Malomed, B.A.: Stability limits for gap solitons in a Bose–Einstein condensate trapped in a time-modulated optical lattice. Phys. Rev. A 74, 033616 (2006)

    Article  Google Scholar 

  53. 53.

    Mayteevarunyoo, T., Malomed, B.A.: Gap solitons in rocking optical lattices and waveguides with undulating gratings. Phys. Rev. A 80, 013827 (2009)

    Article  Google Scholar 

  54. 54.

    Papagiannis, P., Kominis, Y., Hizanidis K.: Power- and momentum-dependent soliton dynamics in lattices with longitudinal modulation. Phys. Rev. A 84, 013820 (2011)

  55. 55.

    Burlak, G., Malomed, B.A.: Dynamics of matter-wave solitons in a time-modulated two-dimensional optical lattice. Phys. Rev. A 77, 053606 (2008)

    Article  Google Scholar 

  56. 56.

    Lakoba, T.I., Yang, J.: Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations. Stud. Appl. Math. 118, 153 (2007)

    MathSciNet  Google Scholar 

  57. 57.

    Mayteevarunyoo, T., Malomed, B.A., Krairiksh, M.: Stability limits for two-dimensional matter-wave solitons in a time-modulated quasi-one-dimensional optical lattice. Phys. Rev. A 76, 053612 (2007)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nir Dror.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dror, N., Malomed, B.A. Stability of solitons in time-modulated two-dimensional lattices. Nonlinear Dyn 91, 1733–1753 (2018).

Download citation


  • Resonance
  • Variational approximation
  • Gap solitons
  • Vortex solitons
  • Bose–Einstein condensate