Skip to main content
Log in

Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new fault-tolerant controller based on an immersion and invariance (I&I) observer to deal with the partial loss of actuator’s effectiveness associated with a quadrotor unmanned aerial vehicle. The I&I observer is utilized to estimate the actuator fault which is unknown, and it is combined with a sliding mode controller to stabilize the attitude of the quadrotor. A dynamic scaling factor and a filtered state are introduced to the observer to guarantee the availability of the invariant and attractive manifold. To avoid the singularity associated with orientation representations, the unit quaternion representation is utilized to formulate the attitude controller. The Lyapunov-based stability analysis is employed to prove that a global asymptotical stability result is achieved. Real-time flight tests are implemented on a self-built hardware-in-loop-simulation quadrotor testbed, and the results show that the proposed fault-tolerant controller has achieved good control performance under partial loss of actuator’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu, H., Lu, G., Zhong, Y.: Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. 60(10), 4627–4636 (2013)

    Article  Google Scholar 

  2. Lugo, J.J., Zell, A.: Framework for autonomous on-board navigation with the AR.Drone. J. Intell. Robot. Syst. 73(1), 401–412 (2014)

    Article  Google Scholar 

  3. Cabecinhas, D., Cunha, R., Silvestre, C.: A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Eng. Pract. 26, 1–10 (2014)

    Article  Google Scholar 

  4. Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)

    Google Scholar 

  5. Yang, Q., Ge, S.S., Sun, Y.: Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators. Automatica 60, 92–99 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhang, Y., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)

    Article  MATH  Google Scholar 

  7. Van Eykeren, L., Chu, Q.P.: Sensor fault detection and isolation for aircraft control systems by kinematic relations. Control Eng. Pract. 31, 200–210 (2014)

    Article  Google Scholar 

  8. Jiang, J., Yu, X.: Fault-tolerant control systems: a comparative study between active and passive approaches. Annu. Rev. Control 36(1), 60–72 (2012)

    Article  MathSciNet  Google Scholar 

  9. Sadeghzadeh, I., Mehta, A., Zhang, Y.: Fault/Damage tolerant control of a quadrotor helicopter UAV using model reference adaptive control and gain-scheduled PID. In: AIAA Guidance, Navigation, and Control Conference, Portaland, USA, pp. 6716–6728, 8–11 Aug (2011)

  10. Zhang, X., Zhang, Y., Su, C.Y., Feng, Y.: Fault tolerant control for quadrotor via backstepping approach. In: The 48th AIAA Aerospace Sciences Meeting, Orlando, USA, pp. 947–958, 4–7 Jan (2010)

  11. Chen, F., Wu, Q., Bin, J., Tao, G.: A reconfiguration scheme for quadrotor helicopter via simple adaptive control and quantum logic. IEEE Trans. Ind. Electron. 62(7), 4328–4335 (2015)

    Article  Google Scholar 

  12. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)

    Article  Google Scholar 

  13. Dydek, Z., Annaswamy, A., Lavretsky, E.: Combined/Composite adaptive control of a quadrotor UAV in the presence of actuator uncertainty. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, pp. 7575–7584, 2–5 Aug (2010)

  14. Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1–4), 27–38 (2012)

    Google Scholar 

  15. Chamseddine, A., Theilliol, D., Zhang, Y.M., Join, C., Rabbath, C.A.: Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: application to a quadrotor unmanned aerial vehicle. Int. J. Adapt. Control Signal Process. 29(1), 1–23 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tong, S., Huo, B., Li, Y.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  17. Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)

    Article  Google Scholar 

  18. Li, Y., Tong, S.: Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2016.2598580

  19. Cen, Z., Noura, H., Susilo, T.B., Al Younes, Y.: Engineering implementation on fault diagnosis for quadrotors based on nonlinear observer. In: 25th Chinese Control and Decision Conference, Guiyang, China, pp. 2971–2975, 25–27 May (2013)

  20. Cen, Z., Noura, H., Al, Y.: Systematic fault tolerant control based on adaptive thau observer estimation for quadrotor UAVs. Int. J. Appl. Math. Comput. Sci. 25(1), 159–174 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Amoozgar, M.H., Chamseddine, A., Zhang, Y.: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1–4), 107–117 (2012)

    Google Scholar 

  22. Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62(5), 2891–2902 (2015)

    Article  Google Scholar 

  23. Astolfi, A., Ortega, R., Venkatraman, A.: A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46(1), 182–189 (2010)

  24. Sun, N., Fang, Y., Chen, H., He, B.: Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: design and experiments. IEEE/ASME Trans. Mechatron. 20(5), 2107–2120 (2015)

  25. Yu, X., Jiang, J.: Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Technol. 20(4), 871–886 (2012)

  26. Xian, B., Diao, C., Zhao, B., Zhang, Y.: Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn. 79(4), 2735–2752 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Karagiannis, D., Carnevale, D., Astolfi, A.: Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans. Autom. Control 53(11), 2602–2614 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Karagiannis, D., Sassano, M., Astolfi, A.: Dynamic scaling and observer design with application to adaptive control. Automatica 45(12), 2883–2889 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ (2002)

    MATH  Google Scholar 

  30. Zou, Y.: Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. Int. J. Robust Nonlinear Control (2016). doi:10.1002/rnc.3607, Published online: 20 July

  31. Xian, B., Zhao, B., Zhang, Y., Zhang, X.: A low-cost hardware-in-the-loop-simulation testbed of quadrotor UAV and implementation of nonlinear control schemes. Robotica 35(3), 588–612 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (Grant No. 14JCZDJC31900), the Key project of Tianjin science and technology support program (Grant No. 15ZCZ DGX00810), the Tianjin science and technology program (Grant No. 14RCHZGX00862), and National Natural Science Foundation of China (Grant Nos. 90916004, 60804004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Xian, B. Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonlinear Dyn 90, 2813–2826 (2017). https://doi.org/10.1007/s11071-017-3842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3842-1

Keywords

Navigation