Skip to main content
Log in

Chattering as a singular problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the chattering through the singularity point of view for the first time. The main novelty of this article is that impact moments are considered as a singularity phenomenon. A bouncing ball, an inverted pendulum and a hydraulic relief valve models are considered for the study. Moreover, the behavior of solutions of a spring-mass system is studied for the small mass. Simulations are given to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Nayfeh, A.H., Chin, C.-M., Pratt, J.: Perturbation methods in nonlinear dynamics—applications to machining dynamics. J. Manuf. Sci. Eng. 119(4A), 485 (1997)

    Article  Google Scholar 

  2. Zhao, X., Dankowicz, H., Reddy, C.K., Nayfeh, A.H.: Modeling and simulation methodology for impact microactuators. J. Micromech. Microeng. 14(6), 775 (2004)

    Article  Google Scholar 

  3. Zhao, X., Reddy, C.K., Nayfeh, A.H.: Nonlinear dynamics of an electrically driven impact microactuator. Nonlinear Dyn. 40(3), 227–239 (2005)

    Article  MATH  Google Scholar 

  4. Nagaev, R.F., Kremer, E.B.: Mechanical Processes with Repeated Attenuated Impacts. World Scientific, Singapore (1999)

    Book  Google Scholar 

  5. Budd, C., Dux, F.: Chattering and related behaviour in impact oscillators. Philos. Trans. Phys. Sci. Eng. 347(1683), 365–389 (1994)

    Article  MATH  Google Scholar 

  6. Chillingworth, D.R.J.: Dynamics of an impact oscillator near a degenerate graze. Nonlinearity 23(11), 2723 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giusepponi, S., Marchesoni, F., Borromeo, M.: Randomness in the bouncing ball dynamics. Phys. A 351(1), 142–158 (2005)

    Article  Google Scholar 

  8. Nordmark, A.B., Piiroinen, P.: Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn. 58(1–2), 85–106 (2009)

    Article  MATH  Google Scholar 

  9. Akhmet, M., Çağ, S.: Analysis of impact chattering. Miskolc Math. Notes 17(2), 707–721 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arkhipova, I.M., Luongo, A., Seyranian, A.P.: Vibrational stabilization of the upright statically unstable position of a double pendulum. J. Sound Vib. 331(2), 457–469 (2012)

    Article  Google Scholar 

  11. Demeio, L., Lenci, S.: Asymptotic analysis of chattering oscillations for an impacting inverted pendulum. Q. J. Mech. Appl. Math. 59(3), 419–434 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Falcon, E., Laroche, C., Fauve, S., Coste, C.: Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B 3(1), 45–57 (1998)

    Article  Google Scholar 

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences. Springer, Berlin (1990)

    MATH  Google Scholar 

  14. McNamara, S., Young, W.: Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A 4, 496–504 (1992)

    Article  Google Scholar 

  15. Hös, C., Champneys, A.R.: Grazing bifurcations and chatter in a pressure relief valve model. Phys. D 241(22), 2068–2076 (2012)

    Article  MathSciNet  Google Scholar 

  16. Nayfeh, A.H.: Perturbation Methods. Wiley, Hoboken (2004)

    Google Scholar 

  17. Luongo, A., Casciati, S., Zulli, D.: Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation. Smart Struct. Syst. 18(1), 183–196 (2016)

    Article  Google Scholar 

  18. Damiano, E.R., Rabbitt, R.D.: A singular perturbation model of fluid dynamics in the vestibular semicircular canal and ampulla. J. Fluid Mech. 307, 333–372 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gondal, I.: On the application of singular perturbation techniques to nuclear engineering control problems. IEEE Trans. Nucl. Sci. 35, 1080–1085 (1988)

    Article  Google Scholar 

  20. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kokotovic, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26, 501–550 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Michaelis, L., Menton, M.L.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–69 (1913)

    Google Scholar 

  23. Owen, M.R., Lewis, M.A.: How predation can slow, stop, or reverse a prey invasion. Bull. Math. Biol. 63, 655–684 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Segel, L.A., Slemrod, M.: The quasi-steady state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Akhmet, M.: Principles of Discontinuous Dynamical Systems. Springer, New York (2010)

    Book  MATH  Google Scholar 

  26. Akhmet, M.: Nonlinear Hybrid Continuous/Discrete-Time Models. Atlantis Studies in Mathematics for Engineering and Science. Atlantis Press, Paris (2011)

    Book  Google Scholar 

  27. Akhmet, M., Fen, M.: Replication of Chaos in Neural Networks, Economics and Physics. Nonlinear Physical Science. Springer, Berlin (2015)

    MATH  Google Scholar 

  28. Chen, W.-H., Chen, F., Lu, X.: Exponential stability of a class of singularly perturbed stochastic time-delay systems with impulse effect. Nonlinear Anal. Real World Appl. 11(5), 3463–3478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, W.-H., Wei, D., Lu, X.: Exponential stability of a class of nonlinear singularly perturbed systems with delayed impulses. J. Frankl. Inst. 350(9), 2678–2709 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chen, W.-H., Yuan, G., Zheng, W.X.: Robust stability of singularly perturbed impulsive systems under nonlinear perturbation. IEEE Trans. Autom. Control 58, 168–174 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Simeonov, P., Bainov, D.: Stability of the solutions of singularly perturbed systems with impulse effect. J. Math. Anal. Appl. 136(2), 575–588 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simeonov, P., Bainov, D.: Exponential stability of the solutions of singularly perturbed systems with impulse effect. J. Math. Anal. Appl. 151(2), 462–487 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vasil’eva, A., Butuzov, V., Kalachev, L.: The Boundary Function Method for Singular Perturbed Problems. Studies in Applied Mathematics. Society for industrial and applied mathematics. SIAM, Philadelphia (1995)

  34. O’Malley, R.E.J.: Singular Perturbation Methods for Ordinary Differential Equations. Applied Mathematical Sciences. Springer, New York (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to the associated editor and the referees for the helpful criticism and valuable suggestions, which helped to improve the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Akhmet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmet, M., Çağ, S. Chattering as a singular problem. Nonlinear Dyn 90, 2797–2812 (2017). https://doi.org/10.1007/s11071-017-3840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3840-3

Keywords

Navigation