Skip to main content
Log in

Integrability and Lie symmetry analysis of deformed \({\varvec{N}}\)-coupled nonlinear Schrödinger equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A systematic investigation to derive the Lax pair and group theoretical properties of deformed N-coupled nonlinear Schrödinger equations (N-coupled NLS) is presented. Exploiting the obtained Lie point symmetries, the corresponding similarity reductions for \(N =1\) and \(N = 2\) are derived separately and show that each of them passes the Painlevé property of ordinary differential equations. Exact solution of deformed coupled NLS equations is also derived wherever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhinav, K., Guha, P.: Inhomogeneous Heisenberg spin chain as a non-holonomically deformed NLS system. arXiv preprint. arXiv:1703.02353 (2017)

  2. Abhinav, K., Guha, P., Mukherjee, I.: Non-holonomic and quasi-integrable deformations of nonlinear Schrödinger equation. arXiv preprint, arXiv:1611.00961 (2016)

  3. Ablowitz, M.J., Kaup, D.J., Newwll, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type I. J. Math. Phys. 21, 715 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  6. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  7. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  8. Conte, R., Musette, M.: The Painlevé Handbook. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  9. Elsayed, M., Zayed, E., Rahman, H.M.A.: The extended tanh-method for finding traveling wave solutions of nonlinear evolution equations. Appl. Math. E-Notes 10, 235–245 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77, 253–299 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guha, P., Mukerjee, I.: Study of the family of Nonlinear schrodinger equations by using the Adler–Kostant–Symes framework and the Tu methodology and their Nonholonomic deformation. arXiv:1311.4334v4 [nlin.SI], (2014)

  12. Guha, P.: Nonholonomic deformation of coupled and supersymmetric KdV equations and Euler-Poincare-Suslov method. Rev. Math. Phys. 27(04), 1550011 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zedan, Hassan A.: New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations. Comput. Appl. Math. 281, 1–14 (2009)

    MATH  MathSciNet  Google Scholar 

  14. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations-Symmetries, Exact Solutions and Conservation Laws. CRC Press, Boca Raton (1994)

  15. Kanna, T., Lakshmanan, M., Tchofo Dinda, P.: Akhmediev, Nail: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E 73, 026604 (2006)

    Article  MathSciNet  Google Scholar 

  16. Kundu, A.: Nonlinearizing linear equations to integrable systems including new hierarchies with nonholonomic deformations. J. Math. Phys. 50, 102702 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kundu, A., Sahadevan, R., Nalinidevi, L.: Nonholonomic deformation of Kdv and mKdv equations and their symmetries, hierarchies and integrability. J. Phys. A Math. Theor. 42, 115213 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kundu, A.: Two-fold integrable hierarchy of nonholonomic deformation of the derivative nonlinear Schrdinger and the Lenells-Fokas equation. J. Math. Phys. 51, 022901 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lakshmanan, M., Sahadevan, R.: Nonlinear Systems. Narosa Publishing House, New Delhi (2002)

    MATH  Google Scholar 

  20. Lakshmanan, M., Kaliappan, P.: Lie transformations nonlinear evolution equations and Painlevé forms. J. Math. Phys. 24, 95–806 (1983)

    Article  MATH  Google Scholar 

  21. Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics, Integrability. Chaos and Patterns. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  22. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  23. Myrzakulov, R., Mamyrbekova, G.K., Nugmanova, G.N., Yesmakhanova, K.R., Lakshmanan, M.: Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations. Phys. Lett. A 378(30–31), 2118–2123 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nakkeeran, K.: Exact soliton solutions for a family of \(N\) coupled nonlinear Schrödinger equations in optical fiber media. Phys. Rev. E 62(1), 1313–1321 (2000)

  25. Nakkeeran, K., Porsezian, K., Shanmugha Sundaram, P., Mahalingam, A.: Optical solitons in \(N-\)coupled higher order nonlinear Schrödinger equations. Phys. Rev. Lett. 80(7), 1425–1428 (1998)

  26. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1986)

  27. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  28. Sahadevan, R., Nalinidevi, L.: Similarity reduction, nonlocal and master symmetries of sixth order Korteweg-de Vries equation. J. Math. Phys. 50, 053505 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sahadevan, R., Nalinidevi, L.: Integrability of certain deformed nonlinear partial differential equations. J. Nonlinear Math. Phys. 17(3), 379–396 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sahadevan, R., Tamizhmani, K.M., Lakshmanan, M.: Painlevé analysis and integrability of coupled nonlinear Schrödinger equations. J. Phys. A Math. Gen. 19, 1783 (1986)

    Article  MATH  Google Scholar 

  31. Sahadevan, R., Radhakrishnan, R., Lakshmanan, M.: Integrability and singularity structure of coupled nonlinear Schrödinger equations. Chaos Solitons Fractals 5(12), 2315–2327 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shao, Y., Zeng, Y.: The solutions of the NLS equations with self-consistent sources. J. Phys. A 38, 2441 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, J.P.: Extension of integrable equations. J. Phys. A Math. Theor. 42, 362004 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wazwaz, A.M., Tantawy, El: New (3+1) dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple soliton solutions. Nonlinear Dyn. 87, 2457–2461 (2017)

  35. Wazwaz, A.M., Tantawy, El: A new integrable (3+1) dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

  36. Wazwaz, A.M.: Two- mode fifth- order KdV equations: Necessary conditions for multiple solitons to exist. Nonlinear Dyn. 87, 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

  37. Wen, L.L., Zhang, H.Q.: Rogue wave solutions of the \((2+1)-\)dimensional derivative nonlinear Schrödinger equation. Nonlinear Dyn. 86(2), 877–889 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zakharov, V.E., Shabat, A.B.: Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972)

    MathSciNet  Google Scholar 

  39. Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)

    Article  Google Scholar 

  40. Zhang, H.Q., Yuan, S.-S., Wang, Y.: Generalized Darboux transformation and rogue wave solution of the coherently-coupled nonlinear Schrödinger system. Mod. Phys. Lett. B 30(13), 1650208 (2016)

    Article  Google Scholar 

  41. Zhang, H.Q., Yuan, S.-S.: General N- dark vector soliton for multi-component defocusing Hirota system in optical fiber media. Commun. Nonlinear Sci. Numer. Simul. 51, 124–132 (2017). doi:10.1016/j.cnsns.2017.03.019

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sahadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh Kumar, S., Balakrishnan, S. & Sahadevan, R. Integrability and Lie symmetry analysis of deformed \({\varvec{N}}\)-coupled nonlinear Schrödinger equations. Nonlinear Dyn 90, 2783–2795 (2017). https://doi.org/10.1007/s11071-017-3837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3837-y

Keywords

Navigation