Skip to main content
Log in

Robust sensor fault estimation for fractional-order systems with monotone nonlinearities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of sensor fault estimation for systems with monotone nonlinearities and unknown inputs. To the best of our knowledge, such a particular problem is treated for the first time, as only actuator faults have been estimated for this class of nonlinear systems in the literature. The design method is based on an unknown input observer and is particularly effective for integer-order systems and fractional-order systems. This can be regarded as a second contribution in the paper. Indeed, to the best of our knowledge, no papers dealing with the observer design problem for fractional-order systems with monotone nonlinearities exist in the literature. In order to validate the theoretical results, two simulation examples are given, including fractional-order examples and the “integer-order” flexible joint electric drive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, J., Patton, R.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  2. Ding, S.X.: Model-Based Fault Diagnosis Techniques—Design Schemes Algorithms and Tools. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  3. Mahmoud, M.S., Xia, Y.: Analysis and Synthesis of Fault Tolerant Control Systems. Wiley, Hoboken (2014)

    Google Scholar 

  4. Hu, Z.G., Zhao, G.R., Zhou, D.W.: Active fault tolerant control based on fault estimation. Appl. Mech. Mater. 635–637, 1199–1202 (2014)

    Article  Google Scholar 

  5. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-Tolerant Control Using Sliding Modes. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  6. Naifar, O., Boukattaya, G., Ouali, A.: Robust software sensor with online estimation of stator resistance applied to WECS using IM. Int. J. Adv. Manuf. Technol. (2015). doi:10.1007/s00170-015-7753-3

    Google Scholar 

  7. Naifar, O., Ben Makhlouf, A., Hammami, M.A.: On observer design for a class of nonlinear systems including unknown time-delay. Mediterr. J. Math. 13, 2841 (2016). doi:10.1007/s00009-015-0659-3

    Article  MATH  MathSciNet  Google Scholar 

  8. Naifar, O., Ben Makhlouf, A., Hammami, M.A., Ouali, A.: State feedback control law for a class of nonlinear time-varying system under unknown time-varying delay. Nonlinear Dyn. 82, 349 (2015). doi:10.1007/s11071-015-2162-6

    Article  MATH  MathSciNet  Google Scholar 

  9. Gouta, H., Saïd, S. H., Barhoumi, N., M’Sahli, F.: Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer. ISA Trans. 67, 280–292 (2017)

  10. Efimov, D., Zolghadri, A.: Optimization of fault detection performance for a class of nonlinear systems. Int. J. Robust Nonlinear Control 22(17), 1969–1982 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kahkeshi, M.S., Sheikholeslam, F., Askari, J.: Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems. Nonlinear Dyn. 79, 2623–2637 (2014)

    Article  MathSciNet  Google Scholar 

  12. Arack, M., Kokotovic, P.: Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12), 1923–1930 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fan, X., Arcak, M.: Observer design for systems with multivariable monotone nonlinearities. Syst. Control Lett. 50(4), 319–330 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, H., Duan, Z.: Actuator fault reconstruction for systems with monotone nonlinearities. Asian J. Control 15, 1091–1101 (2013). doi:10.1002/asjc.598

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang, Q.: An adaptive observer for sensor fault estimation in linear time varying systems. IFAC Proceed. Vol. 38(1), 137–142 (2005)

    Article  Google Scholar 

  16. Du, D., Jiang, B., Shi, P.: Sensor fault estimation and accommodation for discrete-time switched linear systems. IET Control Theory Appl. 8(11), 960–967 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhang, J., Swain, A.K., Nguang, S.K.: Simultaneous robust actuator and sensor fault estimation for uncertain non-linear Lipschitz systems. IET Control Theory Appl. 8(14), 1364–1374 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J., Swain, A.K., Nguang, S.K.: Robust sensor fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems. In: American Control Conference (ACC), IEEE, pp. 5515–5520 (2014)

  19. Defoort, M., Veluvolu, K.C., Rath, J.J., Djemai, M.: Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems. Int. J. Adapt. Control Signal Process. 30(2), 271–283 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, K., Jiang, B., Yan, X.G., Mao, Z.: Incipient sensor fault estimation and accommodation for inverter devices in electric railway traction systems. In: International Journal of Adaptive Control and Signal Processing (2016)

  21. Oustaloup, A.: La Dérivation Non Entiére. Hermes, Paris (1995)

    MATH  Google Scholar 

  22. Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44(4), 554–566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sun, H., Abdelwahad, A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29(5), 441–444 (1984)

    Article  MATH  Google Scholar 

  24. Caponetto, R., Tenereiro Machado, J.A., Trujillo, J.J.: Theory and applications of fractional order systems. Mathematical Problems in Engineering (2014)

  25. Naifar, O., Ben Makhlouf, A., Hammami, M.A.: Comments on ‘Lyapunov stability theorem about fractional system without and with delay’. Commun. Nonlinear Sci. Numer. Simul. 30(1), 360–361 (2016)

    Article  MathSciNet  Google Scholar 

  26. Naifar, O., Ben Makhlouf, A., Hammami, M.A.: Comments on “Mittag–Leffler stability of fractional order nonlinear dynamic systems [Automatica 45 (8)(2009) 1965–1969]”. Automatica 75, 329 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  27. Boroujeni, E.A., Momeni, H.R.: Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92(10), 2365–2370 (2012)

    Article  Google Scholar 

  28. Dadras, S., Momeni, H.R.: Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems. In: Decision and Control and European Control Conference (CDC-ECC), IEEE pp. 6925–6930 (2011)

  29. Dadras, S., Momeni, H.R.: A new fractional order observer design for fractional order nonlinear systems. In: Proceedings of ASME 2011 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, pp. 403–408 (2011)

  30. Liu, H., Duan, Z.: Unknown input observer design for systems with monotone non-linearities. IET Control. Theory Appl. 6, 1941–1947 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Diferential Equations. Elsevier, New York (2006)

    Google Scholar 

  32. Podlubny, I.: Fractional Diferential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaad Jmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jmal, A., Naifar, O., Ben Makhlouf, A. et al. Robust sensor fault estimation for fractional-order systems with monotone nonlinearities. Nonlinear Dyn 90, 2673–2685 (2017). https://doi.org/10.1007/s11071-017-3830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3830-5

Keywords

Navigation