Skip to main content
Log in

Analysis of a coupled short pulse system via symmetry method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we focus on two different points. Firstly, the Lie symmetry analysis is presented for a coupled short pulse system which describes the propagation of two orthogonally polarized modes in optical fibers. Then the similarity reductions and exact solutions of the system are performed based on the optimal systems. Secondly, the explicit solutions are constructed by the power series method. Moreover, the convergence of the power series solutions are discussed. Such power series solutions and similarity reductions are important in both applications and the theory of nonlinear waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Robelo, M.L.: On equations which describe pseudospherical surfaces. Stud. Appl. Math. 81, 221–248 (1989)

    Article  MathSciNet  Google Scholar 

  3. Matsuno, Y.: Multisoliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2007)

    Article  Google Scholar 

  4. Parkes, E.J.: Some periodic and solitary travelling-wave solutions of the short-pulse equation. Chaos Solitons Fract. 38, 154–159 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuetche, V.K., Bouetou, T.B., Kofane, T.C.: On Two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota’s method and Hodnett–Moloney approach. J. Phys. Soc. Jpn. 76, 2062–2075 (2007)

    Google Scholar 

  6. Kurt, L., Chung, Y., Schäfer, T.: Higher-order corrections to the short pulse equation. J. Phys. A Math. Theor. 46, 3739–3744 (2012)

    Google Scholar 

  7. Sakovich, S.: Integrability of the vector short pulse equation. J. Phys. Soc. Jpn. 77, 123001 (2008)

    Article  Google Scholar 

  8. Matsuno, Y.: A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys. 52, 123702 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brunelli, J.C., Sakovich, S.: Hamiltonian integrability of two-component short pulse equations. J. Math. Phys. 54, 012701 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kuetche, V.K., Bouetou, T.B., Kofane, T.C.: On the conversion of exact rotating loop-like soliton solution to generalized Schäfer–Wayne short pulse equation. J. Phys. Soc. Jpn. 76, 073001 (2007)

    Article  MATH  Google Scholar 

  11. Youssoufa, S., Kuetche, V.K., Kofane, T.C.: Generation of a new coupled ultra-short pulse system from a group theoretical viewpoint: the cartan ehresman connection. Chin. Phys. Lett. 29(2), 020202 (2012)

    Article  Google Scholar 

  12. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  13. Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Tota lattice. Suppl. Prog. Theor. Phys. 59, 64–100 (1976)

    Article  Google Scholar 

  14. Wazwaz, A.M., El-Tantawy, S.A.: New (\(3+1\))-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457–2461 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (\(3+1\))-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, Y.S.: Soliton and integrable systems. In: Advanced Series in Nonlinear Science. Shanghai Scientific and Technological Education Publishing House, Shang Hai (1999) (in Chinese)

  17. Lu, K., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  MathSciNet  Google Scholar 

  18. Olver, P.J.: Applications of Lie Groups to Differential Equations. In: Graduate Texts in Mathematics. Springer, New York(1993)

  19. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  20. Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesp equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Clarkson, P.: New similarity reductions for the Modified Boussinesp equation. J. Phys. A Gen. 22, 2355–2367 (1989)

    Article  MATH  Google Scholar 

  23. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2004)

    MATH  Google Scholar 

  24. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  25. Grigoriev, Y.N., Kovalev, V.F., Meleshko, S.V.: Symmetries of Integro-differential Equations: with Applications in Mechanics and Plasma Physics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  26. Abdulwahhab, M.A.: Optimal system and exact solutions for the generalized system of 2-dimensional Burgers equations with infinite Reynolds number. Commun. Nonlinear Sci. Numer. Simul. 20, 98–112 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Asmar, N.H.: Partial Differential Equations with Fourier Series and Boundary Value Problems. China Machine Press, Beijing (2005)

    MATH  Google Scholar 

  28. Rudin, W.: Principles of Mathematical Analysis. China Machine Press, Beijing (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., He, C. Analysis of a coupled short pulse system via symmetry method. Nonlinear Dyn 90, 2627–2636 (2017). https://doi.org/10.1007/s11071-017-3827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3827-0

Keywords

Navigation