Skip to main content
Log in

Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper develops a dynamics-based nonsingular interval model and proposes a first-order composite function interval perturbation method (FCFIPM) for luffing angular response field analysis of the dual automobile cranes system (DACS) with narrowly bounded uncertainty. By using the nonsingular interval model to describe a structure parameter with bounded uncertainty, the reasonable lower and upper bounds can be obtained, which is quite different from the traditional interval model with approximate bounds only from a large number of samples. Firstly, for the DACS with deterministic information, the inverse kinematics is analyzed, and the dynamic model of the DACS is established based on the virtual work principle and the inverse kinematics. Secondly, considering the nonsingularity of the dynamic response curves, a dynamics-based nonsingular interval model is introduced. Based on the nonsingular interval model, the interval luffing angular response vector equilibrium equation of the DACS is established. Thirdly, a first-order composite function interval perturbation method is proposed. In the FCFIPM, the composite function vectors are expanded by using the first-order Taylor series expansion, based on the differential property of composite function and monotonic analysis technique, the lower and upper bounds of the interval luffing angular response vector of the crane 1 and crane 2 of the DACS are determined. The first case is to investigate the deterministic kinematics and dynamics of the DACS with a given trajectory. The second case is provided to illustrate the detailed implementation process of constructing a dynamics-based nonsingular interval model. Finally, some numerical examples are given to verify the feasibility and efficiency of the FCFIPM for solving the luffing angular response field problem with narrowly interval parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

D :

The length of \(A_1 A_2 \)

d :

The length of payload \(C_1 C_2 \)

\(L_i \) :

The length of lifting arm \(A_i B_i \)

\(\gamma _i \) :

The luffing angular of lifting arm \(A_i B_i \)

\({{{\varvec{r}}}}_{A_i} \) :

The position vector of joint point \(A_i \) in the base frame \(\left\{ B \right\} \)

\(\dot{{\varvec{r}}}_{A_i}\) :

The velocity vector of joint point \(A_i \)

\({{\varvec{r}}}_{B_i} \) :

The position vector of joint point \(B_i \) in the base frame \(\left\{ B \right\} \)

\(\dot{{\varvec{r}}}_{B_i}\) :

The velocity vector of joint point \(B_i \)

\({\varvec{a}}_{B_i } \) :

The acceleration vector of joint point \(B_i \)

\({{\varvec{r}}}_{C_i } \) :

The position vector of joint point \(C_i \) in the base frame \(\left\{ B \right\} \)

\({\dot{{\varvec{r}}}}_{C_{i}}\) :

The velocity vector of joint point \(C_i \)

\({{\varvec{a}}}_{C_i } \) :

The acceleration vector of joint point \(C_i \)

\({{\varvec{r}}}_{O_i } \) :

The position vector of centroid \(O_i \) of lifting arm \(A_i B_i \) in the base frame \(\left\{ B \right\} \)

\({{\varvec{a}}}_{O_i } \) :

The acceleration of centroid \(O_i \) of lifting arm \(A_i B_i \)

\({{\varvec{r}}}_{O_p } \) :

The position vector of centroid \(O_p \) in the base frame \(\left\{ B \right\} \)

\({{\varvec{v}}}_{O_p } \) :

The velocity vector of the origin \(O_p \)

\({{\varvec{a}}}_{O_p } \) :

The acceleration vector of centroid \(O_p \)

\({{\varvec{r}}}_{C_i }^p \) :

The position vector of joint point \(C_i \) in the moving frame \(\left\{ P \right\} \)

\({{\varvec{J}}}_{{{\varvec{w}}}_{A_i B_i } } \) :

The partial angular velocity matrix of lifting arm \(A_i B_i \)

\({{\varvec{J}}}_{{{\varvec{v}}}_{B_i } } \) :

The partial velocity matrix of joint point \(B_i \)

\({{\varvec{J}}}_{{{\varvec{w}}}_p } \) :

The partial angular velocity matrix of the payload

\({{\varvec{J}}}_{{{\varvec{v}}}_{C_i } } \) :

The partial velocity matrix of joint point \(C_i \)

\(S_i \) :

The length of hoisting rope \(B_i C_i \)

\(\beta _i \) :

The rotation angle of hoisting rope \(B_i C_i \)

\(\dot{\beta }_{i}\) :

The angular velocity of hoisting rope \(B_i C_i \) with respect to the lifting arm \(A_i B_i \)

\(m_i \) :

The mass of lifting arm \(A_i B_i \)

\({\varvec{R}}\) :

The rotation matrix from moving frame \(\left\{ P \right\} \) to base frame \(\left\{ B \right\} \)

\({\varvec{R}}'\) :

The deviation of \({\varvec{R}}\) with respect to time

\({\varvec{R}}''\) :

The deviation of \({\varvec{R}}'\) with respect to time

\(\theta \) :

The rotation angle of \(\left\{ P \right\} \) relative to \(\left\{ B \right\} \)

\(\dot{\theta }\) :

The deviation of \(\theta \) with respect to time

\(\ddot{\theta }\) :

The deviation of \(\dot{\theta }\) with respect to time

y :

The Cartesian coordinates of the origin \(O_p \) along the y-axis.

z :

The Cartesian coordinates of the origin \(O_p \) along the z-axis.

\({{\varvec{F}}}_{A_i B_i } \) :

The inertia force of lifting arm \(A_i B_i \) respecting to joint point \(A_i \)

\({{\varvec{M}}}_{A_i B_i } \) :

The inertia moment of lifting arm \(A_i B_i \) respecting to joint point \(A_i \)

\({{\varvec{F}}}_p \) :

The inertia force of payload respecting to point \(C_1 \)

\({{\varvec{M}}}_p \) :

The inertia moment of payload respecting to point \(C_1 \)

\({\varvec{\tau }}\) :

The driving torque vector of the DACS

\({\varvec{\tau }}_1 \) :

The driving torque that impose on lifting arm \(A_1 B_1 \)

\({\varvec{\tau }}_2 \) :

The driving torque that impose on lifting arm \(A_2 B_2 \)

\({{\varvec{J}}}_{\mathrm{DACS}} \) :

The kinematic Jacobian matrix of the DACS

\({{\varvec{J}}}\) :

The dynamic Jacobian matrix of the DACS

\({{\varvec{S}}}_i \) :

The matrix of the ith crane

\({{\varvec{T}}}_i \) :

The vector of the ith crane

\({\varvec{\gamma }} \) :

The luffing angular response vector.

\({{\varvec{y}}}\) :

The interval parameter vector

\(y_r \) :

The interval variable

\({{\varvec{S}}}_i \left( {{{\varvec{K}}}_i \left( {{\varvec{X}}} \right) } \right) \) :

The composite function matrix of the ith crane

\({{\varvec{T}}}_i \left( {{{\varvec{K}}}_i \left( {{\varvec{X}}} \right) } \right) \) :

The composite function vector of the ith crane

\({{\varvec{y}}}^{{\varvec{c}}}\) :

The midpoint value of the interval parameter vector \({{\varvec{y}}}\)

\(y_r^c \) :

The midpoint value of interval parameter \(y_r \)

\(\Delta y_r \) :

The interval radius of interval parameter \(y_r \)

\({{\varvec{S}}}_i^c \) :

The midpoint value of composite function vector \({{\varvec{S}}}_i \left( {{{\varvec{K}}}_i \left( {{\varvec{y}}} \right) } \right) \)

\(\Delta _1 {{\varvec{S}}}_i^I \) :

The deviation interval of composite function vector \({{\varvec{S}}}_i \left( {{{\varvec{K}}}_i \left( {{\varvec{y}}} \right) } \right) \)

\({{\varvec{T}}}_i^c \) :

The midpoint value of composite function vector \({{\varvec{T}}}_i \left( {{{\varvec{K}}}_i \left( {{\varvec{y}}} \right) } \right) \)

\(\Delta _1 {{\varvec{T}}}_i^I \) :

The deviation interval of composite function vector \({{\varvec{T}}}_i \left( {{{\varvec{K}}}_i \left( {{\varvec{y}}} \right) } \right) \)

\({\varvec{\gamma }} _i^c \) :

The midpoint value of interval luffing angular response vector \({\varvec{\gamma }}_i^I \)

\({{\Delta }} _1 {\varvec{\gamma }} _i^I \) :

The deviation interval of interval luffing angular response vector \({\varvec{\gamma }}_i^I \)

\(\overline{{\varvec{\gamma }}_i } \) :

The upper bound of interval luffing angular response vector \({\varvec{\gamma }}_i^I \)

\(\underline{{\varvec{\gamma }}_i }\) :

The lower bound of interval luffing angular response vector \({\varvec{\gamma }}_i^I \)

\(D^{c}\) :

The midpoint of length of \(A_1 A_2 \)

\(d^{c}\) :

The midpoint of length of payload \(C_1 C_2 \)

\(L_1^c \) :

The midpoint of length of lifting arm \(A_1 B_1 \)

\(L_2^c \) :

The midpoint of length of lifting arm \(A_2 B_2 \)

\(\Delta D\) :

The interval radius of interval variable D

\(\Delta d\) :

The interval radius of interval variable d

\(\Delta L_1 \) :

The interval radius of interval variable \(L_1 \)

\(\Delta L_2 \) :

The interval radius of interval variable \(L_2 \)

\(D_F \) :

The interval change ratio of interval variable D

\(d_F \) :

The interval change ratio of interval variable d

\(L_{1F} \) :

The interval change ratio of interval variable \(L_1 \)

\(L_{2F} \) :

The interval change ratio of interval variable \(L_2 \)

References

  1. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.: Dynamics and control of cranes: a review. J. Vib. Control. 9, 863–908 (2003)

    Article  MATH  Google Scholar 

  2. Carmona, I.G., Collado, J.: Control of a two wired hammerhead tower crane. Nonlinear Dyn. 84(4), 2137–2148 (2016)

    Article  MathSciNet  Google Scholar 

  3. Elbadawy, A.A., Shehata, M.M.G.: Anti-sway control of marine cranes under the disturbance of a parallel manipulator. Nonlinear Dyn. 82(1), 1–20 (2015)

    Google Scholar 

  4. Sağirli, A., Boğoçlu, M.E., Ömürlü, V.E.: Modeling the dynamics and kinematics of a telescopic rotary crane by the bond graph method: part i. Nonlinear Dyn. 33(33), 353–367 (2003)

    Article  MATH  Google Scholar 

  5. Uchiyama, N.: Robust control of rotary crane by partial-state feedback with integrator. Mechatronics 19(8), 1294–1302 (2009)

    Article  Google Scholar 

  6. Zhang, M., Ma, X., Chai, H., Rong, X., Tian, X., Li, Y.: A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn. 85(2), 1079–1090 (2016)

    Article  MATH  Google Scholar 

  7. Fang, Y., Wang, P., Sun, N., Zhang, Y.: Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Ind. Electron. 61(1), 414–427 (2014)

    Article  Google Scholar 

  8. Leban, F.A., Diaz-Gonzalez, J., Parker, G.G., Zhao, W.: Inverse kinematic control of a dual crane system experiencing base motion. IEEE Trans. Control Syst. Technol. 23, 331–339 (2015)

    Article  Google Scholar 

  9. Zi, B., Sun, H., Zhang, Dan: Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Robot. Comput. Integr. Manuf. 48, 196–208 (2017)

    Article  Google Scholar 

  10. Qian, S., Zi, B., Ding, H.F.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83, 89–108 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Qian, S., Zi, B., Zhang, D., Zhang, L.: Kinematics and error analysis of cooperative cable parallel manipulators for multiple mobile cranes. Int. J. Mech. Mater. Des. 10(4), 395–409 (2014)

    Article  Google Scholar 

  12. Sun, N., Fang, Y., Chen, H., Lu, B.: Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: design and hardware experimentation. IEEE Trans. Ind. Electron. 63, 6407–6418 (2016)

    Article  Google Scholar 

  13. Sun, N., Fang, Y., Chen, H.: Adaptive antiswing control for cranes in the presence of rail length constraints and uncertainties. Nonlinear Dyn. 81(1–2), 41–51 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Impollonia, N., Muscolino, G.: Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput. Methods. Appl. Mech. Eng. 200, 1945–1962 (2011)

    Article  MATH  Google Scholar 

  15. Gao, W., Song, C.M., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 32, 191–199 (2010)

    Article  Google Scholar 

  16. Shinozuka, M., Astill, C.J.: Random eigenvalue problems in structural analysis. AIAA J. 10(10), 456–462 (2015)

    MATH  Google Scholar 

  17. Wang, C., Qiu, Z., Yang, Y.: Uncertainty propagation of heat conduction problem with multiple random inputs. Int. J. Heat Mass Transf. 99, 95–101 (2016)

    Article  Google Scholar 

  18. Wang, C., Qiu, Z.: Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters. Int. J. Heat Mass Transf. 80, 319–328 (2015)

    Article  Google Scholar 

  19. Wang, C., Qiu, Z.: Subinterval perturbation methods for uncertain temperature field prediction with large fuzzy parameters. Int. J. Therm. Sci. 100, 381–390 (2015)

    Article  Google Scholar 

  20. Wang, M., Huang, Q.: A new hybrid uncertain analysis method for structural-acoustic systems with random and interval parameters. Comput. Struct. 175, 15–28 (2016)

    Article  Google Scholar 

  21. Xia, B., Yu, D.: Response probability analysis of random acoustic field based on perturbation stochastic method and change-of-variable technique. J. Vib. Acoust. 135(5), 521–523 (2013)

    Google Scholar 

  22. Yin, S., Yu, D., Yin, H., Xia, B.: A unified method for the response analysis of interval/random variable models of acoustic fields with uncertain-but-bounded parameters. Int. J. Numer. Methods. Eng. 111(6), 503–528 (2017)

  23. Xia, B., Yu, D., Han, X.: Unified response probability distribution analysis of two hybrid uncertain acoustic fields. Comput. Methods. Appl. Mech. Eng. 276(7), 20–34 (2014)

    Article  MathSciNet  Google Scholar 

  24. Bai, Y.C., Jiang, C., Han, X., Hu, D.A.: Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties. Finite. Elem. Anal. Des. 68(3), 52–62 (2013)

    Article  Google Scholar 

  25. Jiang, C., Ni, B.Y., Han, X.: Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput. Methods Appl. Mech. Eng. 268(1), 656–676 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zi, B., Zhou, B.: A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters. J. Sound. Vib. 374, 111–137 (2016)

    Article  Google Scholar 

  27. Do, D., Gao, W., Song, C.: Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Reliab. Eng. Syst. Saf. 132, 46–59 (2014)

    Article  Google Scholar 

  28. Pietro, T., Seymour, M., Luigi, P., Pirrotta, A., Kareem, A.: An efficient framework for the elasto-plastic reliability assessment of uncertain wind excited systems. Struct. Saf. 58, 69–78 (2016)

    Article  Google Scholar 

  29. Wu, B., Wu, D., Gao, W.: Time-variant random interval response of concrete-filled steel tubular composite curved structures. Compos. Part B Eng. 94, 122–138 (2016)

    Article  Google Scholar 

  30. Wu, D., Gao, W., Feng, J.: Structural behaviour evolution of composite steel-concrete curved structure with uncertain creep and shrinkage effects. Compos. Part B Eng. 86, 261–272 (2015)

    Article  Google Scholar 

  31. Zi, B., Zhou, B., Qian, S.: Dynamic modeling and analysis of cable parallel manipulator for dual automobile cranes during luffing motion. J. Mech. Eng. doi:10.3901/JME.2016.06.198 (in Chinese)

  32. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  33. Armiyoon, A.R., Wu, C.Q.: A novel method to identify boundaries of basins of attraction in a dynamical system using Lyapunov exponents and Monte Carlo techniques. Nonlinear Dyn. 79(1), 275–293 (2014)

    Article  MathSciNet  Google Scholar 

  34. Chen, N., Yu, D., Xia, B.: Hybrid uncertain analysis for the prediction of exterior acoustic field with interval and random parameters. Comput. Struct. 141, 9–18 (2014)

    Article  Google Scholar 

  35. Xia, B., Yu, D., Liu, J.: Hybrid uncertain analysis of acoustic field with interval random parameters. Comput. Method. Appl. Mech. Eng. 256(4), 56–69 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, C., Qiu, Z.: An interval perturbation method for exterior acoustic field prediction with uncertain-but-bounded parameters. J. Fluids Struct. 49, 441–449 (2014)

    Article  Google Scholar 

  37. Wang, C., Qiu, Z.: Interval analysis of steady-state heat convection-diffusion problem with uncertain-but-bounded parameters. Int. J. Heat Mass Transf. 91, 355–362 (2015)

    Article  Google Scholar 

  38. Xia, B., Yu, D.: Modified interval perturbation finite element method for a structural-acoustic system with interval parameters. J. Appl. Mech. 80(4), 041027 (2013)

    Article  Google Scholar 

  39. Xia, B., Yu, D., Liu, J.: Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters. J. Fluids Struct. 38(3), 146–163 (2013)

  40. Muscolino, G., Santoro, R., Sofi, A.: Explicit sensitivities of the response of discretized structures under stationary random processes. Probabilist. Eng. Mech. 35(1), 82–95 (2014)

    Article  Google Scholar 

  41. Sofi, A., Muscolino, G.: Static analysis of Euler–Bernoulli beams with interval Young’s modulus. Comput. Struct. 156, 72–82 (2015)

    Article  Google Scholar 

  42. Muscolino, G., Santoro, R., Sofi, A.: Explicit frequency response functions of discretized structures with uncertain parameters. Comput. Struct. 133, 64–78 (2014)

    Article  Google Scholar 

  43. Muscolino, G., Sofi, A.: Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech. Syst. Signal Process. 37(37), 163–181 (2013)

    Article  Google Scholar 

  44. Wu, J., Zhang, Y., Chen, L., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527–548 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  46. Qian, S., Zi, B., Ding, H.F., Kecskemethy, A.: Design and analysis of cooperative cable parallel manipulators for multiple mobile cranes. Int. J. Adv. Robot. Syst. 9, 1–9 (2012)

    Article  Google Scholar 

  47. Zhu, Z., Dou, R.: Optimum design of 2-DOF parallel manipulators with actuation redundancy. Mechatronics 19, 761–766 (2009)

    Article  Google Scholar 

  48. Wu, J., Wang, J., You, Z.: A comparison study on the dynamics of planar 3-DOF4-RRR, 3-RRRand 2-RRR parallel manipulators. Robot. Comput. Integr. Manuf. 27, 150–156 (2011)

    Article  Google Scholar 

  49. Jiang, C., Ni, B., Liu, N.: Interval process model and non-random vibration analysis. J. Sound. Vib. 373, 104–131 (2016)

    Article  Google Scholar 

  50. Kim, J.: Delay-dependent robust \(H_\infty \) filtering for uncertain discrete-time singular systems with interval time-varying delay. Automatica 46(3), 591–597 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51575150 and 51605126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zi, B. & Qian, S. Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty. Nonlinear Dyn 90, 2599–2626 (2017). https://doi.org/10.1007/s11071-017-3826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3826-1

Keywords

Navigation