Nonlinear Dynamics

, Volume 90, Issue 4, pp 2481–2494 | Cite as

Radially and axially symmetric motions of a class of transversely isotropic compressible hyperelastic cylindrical tubes

  • Ran Wang
  • Wen-zheng Zhang
  • Zhen-tao Zhao
  • Hong-wu Zhang
  • Xue-gang YuanEmail author
Original Paper


In this paper, the radially and axially symmetric motions are examined for a hyperelastic cylindrical tube composed of a class of transversely isotropic compressible neo-Hookean materials about the radial direction. Firstly, a system of coupled nonlinear evolution equations describing the motions of the cylindrical tube is derived by Hamilton’s principle. Then the system is reduced to a system of nonlinear ordinary differential equations by the travelling wave transformations. According to the theory of planar dynamical systems, qualitative analyses on the solutions of the system are given in different parameter spaces. Specially, the influences of the material parameters on the qualitative and quantitative properties of the solutions are discussed. Two types of travelling wave solutions of the radially symmetric motion are obtained, including classical periodic travelling wave solutions and solitary wave solutions with the peak form. So does the axially symmetric motion, but solitary wave solutions with the valley form. Correspondingly, some numerical examples are shown.


Hyperelastic cylindrical tube Transversely isotropic compressible neo-Hookean material Radially and axially symmetric motions Bounded travelling wave solutions 



This work is supported by the National Natural Science Foundation of China (Nos. 11672069, 11702059, 11232003, 11672062); the Ph.D. Programs Foundation of Ministry of Education of China (No. 20130041110050); the Research Start-up Project Plan for Liaoning Doctors (No. 20141119); the Fundamental Research Funds for the Central Universities (No. DC201502050407, DC201502050203); 111 Project (B08014). The authors also appreciate the editor’s earnest work and three anonymous reviewers for their helpful comments on an earlier draft of this paper.


  1. 1.
    Fu, Y.B., Ogden, R.W.: Nonlinear Elasticity: Theory and Applications. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ben, A.M., Bianca, C.: Towards a unified approach in the modeling of fibrosis: a review with research perspectives. Phys. Life Rev. 17, 61–85 (2016)CrossRefGoogle Scholar
  3. 3.
    Knowles, J.K.: Large amplitude oscillations of a tube of incompressible elastic material. Q. Appl. Math. 18, 71–77 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chou-Wang, M.S., Horgan, C.O.: Cavitation in nonlinear elastodynamics for neo-Hookean materials. Int. J. Eng. Sci. 27, 967–973 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Yuan, X.G., Zhu, Z.Y., Zhang, R.J.: Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech. 41, 294–303 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Yuan, X.G., Zhu, Z.Y., Cheng, C.J.: Dynamical analysis of cavitation for a transversely isotropic incompressible hyper-elastic medium: periodic motion of a pre-existing micro-void. Int. J. Non-Linear Mech. 42, 442–449 (2007)CrossRefGoogle Scholar
  7. 7.
    Roussos, N., Mason, D.P.: Non-linear radial oscillations of a thin-walled double-layer hyperelastic cylindrical tube. Int. J. Non-Linear Mech. 33, 507–530 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lafortune, S., Goriely, A., Tabor, M.: The dynamics of stretchable rods in the inertial case. Nonlinear Dyn. 43, 173–195 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Mason, D.P., Maluleke, G.H.: Non-linear radial oscillations of a transversely isotropic hyperelastic incompressible tube. J. Math. Anal. Appl. 333, 365–380 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Beatty, M.F.: On the radial oscillations of incompressible, isotropic, elastic and limited elastic thick-walled tubes. Int. J. Non-Linear Mech. 42, 283–297 (2007)CrossRefGoogle Scholar
  11. 11.
    Yuan, X.G., Zhang, R.J., Zhang, H.W.: Controllability conditions of finite oscillations of hyper-elastic cylindrical tubes composed of a class of Ogden material models. Comput. Mater. Contin. 7, 155–156 (2008)Google Scholar
  12. 12.
    Wright, T.W.: Nonlinear waves in a rod: results for incompressible elastic materials. Stud. Appl. Math. 72, 149–160 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Coleman, B.D., Newman, D.C.: On waves in slender elastic rods. Arch. Ration. Mech. Anal. 109, 39–61 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Cohen, H., Dai, H.H.: Nonlinear axisymmetric waves in compressible hyperelastic rods: long finite amplitude waves. Acta Mech. 100, 223–239 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dai, H.H., Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. Proc. R. Soc. A Math. Phys. Eng. Sci. 456, 331–363 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dai, H.H., Li, J.B.: Nonlinear travelling waves in a hyperelastic rod composed of a compressible Mooney–Rivlin material. Int. J. Non-Linear Mech. 44, 499–510 (2009)CrossRefGoogle Scholar
  17. 17.
    Dai, H.H., Peng, X.: Weakly nonlinear long waves in a prestretched Blatz–Ko cylinder: solitary, kink and periodic waves. Wave Motion 48, 761–772 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Vallikivi, M., Salupere, A., Dai, H.H.: Numerical simulation of propagation of solitary deformation waves in a compressible hyperelastic rod. Math. Comput. Simul. 82, 1348–1362 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Zhu, M., Liu, Y., Qu, C.: On the model of the compressible hyperelastic rods and Euler equations on the circle. J. Differ. Equ. 254, 648–659 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Shearer, T., Abrahams, I.D., Parnell, W.J., Daros, C.H.: Torsional wave propagation in a pre-stressed hyperelastic annular circular cylinder. Q. J. Mech. Appl. Math. 66, 465–487 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Fu, Y.B., Il’Ichev, A.T.: Localized standing waves in a hyperelastic membrane tube and their stabilization by a mean flow. Math. Mech. Solids 20, 1198–2014 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Jiang, H.J., Xiang, J.J., Dai, C.Q.: Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels. Nonlinear Dyn. 75, 201–207 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Clayton, J.D., Bliss, K.M.: Analysis of intrinsic stability criteria for isotropic third-order Green elastic and compressible neo-Hookean solids. Mech. Mater. 68, 104–119 (2014)Google Scholar
  24. 24.
    Polignone, D.A., Horgan, C.O.: Cavitation for incompressible anisotropic nonlinearly elastic spheres. J. Elast. 33, 27–65 (1993)CrossRefzbMATHGoogle Scholar
  25. 25.
    Yu, L.Q., Tian, L.X.: Loop solutions, breaking kink (or anti-kink) wave solutions, solitary wave solutions and periodic wave solutions for the two-component Degasperis–Procesi equation. Nonlinear Anal. Real World Appl. 15, 140–148 (2014)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Ran Wang
    • 1
  • Wen-zheng Zhang
    • 2
  • Zhen-tao Zhao
    • 1
  • Hong-wu Zhang
    • 1
  • Xue-gang Yuan
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering MechanicsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.College of ScienceDalian Minzu UniversityDalianPeople’s Republic of China

Personalised recommendations