Skip to main content
Log in

Shaking table tests and numerical investigation of two-sided damping constraint for end-stop impact protection

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

During strong earthquakes, structural pounding may occur between the equipment and the surrounding moat wall because of the limited separation distance and the deformations of the isolator. A potential mitigation measure for this problem is the incorporation of collision bumpers. The aim of the paper is to study the experimental dynamic response and to formulate numerical model of a base-isolated SDOF oscillator excited by a harmonic base acceleration and symmetrically bounded by two unilateral deformable and dissipative constraints. Static tests have been first performed to determine the static characteristics and the support conditions of the bumpers, and successively, shaking table tests have been carried out to investigate two different configurations: the absence and the presence of bumpers. In both configurations, tests were carried out with the same type of excitation to the base. Different values of the table acceleration peak were applied, different amplitude values of the total gap between mass and bumpers were considered, and also two different types of bumpers were employed. The experimental dynamic responses in the absence and in the presence of bumpers have been compared, and the results obtained in the presence of bumpers have also been used to identify some characteristics of the dynamics with impact (force and time of contact between mass and bumpers, energy dissipated by the bumpers during the impact, and coefficient of restitution). A suitable model has been developed to numerically simulate the behavior of the system by using a general-purpose computer code, achieving a good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Ren, W., Zhang, J., Jin, G.: The virtual tuning of an automatic shock absorber. J. Mech. Eng. Sci. (2009). doi:10.1243/09544062JMES1542

    Google Scholar 

  2. Polycarpou, P.C., Komodromos, P.: Earthquake-induced poundings of a seismically isolated building with adjacent structures. Eng. Struct. (2010). doi:10.1016/j.engstruct.2010.03.011

    Google Scholar 

  3. Koylu, H., Cinar, A.: The influences of worn shock absorber on ABS braking performance on rough road. Int. J. Veh. Des. (2011). doi:10.1504/IJVD.2011.043598

    Google Scholar 

  4. Sun, H., Li, B., Bi, K., Chouw, N., Butterworth, J.W., Hao, H.: Shake table test of a three-span bridge model. In: Proceedings of 9th Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, pp. 1–8. NZSEE, Auckland, New Zealand (2011)

  5. Amati, N., Festini, A., Tonoli, A.: Design of electromagnetic shock absorbers for automotive suspensions. Veh. Syst. Dyn. (2011). doi:10.1080/00423114.2011.554560

    Google Scholar 

  6. Guo, A.X., Li, Z.J., Li, H., Ou, J.P.: Experimental and analytical study on pounding reduction of base-isolated highway bridges using MR dampers. Earthq. Eng. Struct. Dyn. (2009). doi:10.1002/Eqe.903

    Google Scholar 

  7. Ciampi, V., De Angelis, M., Renzi, E.: Optimal design selection of special connections between adjacent structures in passive and semi-active vibration control strategies. In: Proceedings of 4th European Conference on Structural Dynamics, pp. 611–616, Balkema, Rotterdam, The Netherlands (1999)

  8. De Angelis, M., Ciampi, V.: Effectiveness of dissipative connections on improving the earthquake response of adjacent structures. In: Duma (ed.) Proceedings of 10th European Conference on Earthquake Engineering, pp. 1891–1986, Balkema, Rotterdam (1994)

  9. Basili, M., De Angelis, M.: A reduced order model for optimal design of 2-mdof adjacent structures connected by hysteretic dampers. J. Sound Vib. (2007). doi:10.1016/j.jsv.2007.05.012

    Google Scholar 

  10. Basili, M., De Angelis, M.: Optimal passive control of adjacent structures interconnected with non linear hysteretic devices. J. Sound Vib. (2007b). doi:10.1016/j.jsv.2006.09.027

    Google Scholar 

  11. Basili, M., De Angelis, M., Fraraccio, G.: Shaking table experimentation on adjacent structures controlled by passive and semi-active MR dampers. J. Sound Vib. (2013). doi:10.1016/j.jsv.2012.12.040

    Google Scholar 

  12. Ferdek, U., Luczko, J.: Modeling and analysis of a twin-tube hydraulic shock absorber. J. Theor. Appl. Mechs. 50, 627–638 (2012)

    Google Scholar 

  13. Masroor, A., Mosqueda, G.: Experimental simulation of base-isolated buildings pounding against moat wall and effects on superstructure response. Earthq. Eng. Struct. Dyn. (2012). doi:10.1002/eqe.2177

    Google Scholar 

  14. Polycarpou, P.C., Komodromos, P., Polycarpou, A.C.: A nonlinear impact model for simulating the use of rubber shock absorber for mitigating the effects of structural pounding during earthquakes. Earthq. Eng. Struct. Dyn. (2013). doi:10.1002/eqe.2194

    Google Scholar 

  15. Masroor, A., Mosqueda, G.: Impact model for simulation of base isolated buildings impacting flexible moat walls. Earthq. Eng. Struct. Dyn. (2013). doi:10.1002/eqe.2210

    Google Scholar 

  16. Fang, Z., Guo, X., Xu, L., Zhang, H.: Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber. Adv. Mech. Eng. (2013). doi:10.1155/2013/943528

    Google Scholar 

  17. Anagnostopoulos, S.A., Spiliopoulos, K.V.: An investigation of earthquake induced pounding between adjacent buildings. Earthq. Eng. Struct. Dyn. (1992). doi:10.1002/eqe.4290210402

    Google Scholar 

  18. Reggio, A., De Angelis, M.: Combined primary-secondary system approach to the design of an equipment isolation system with high-damping rubber bearings. J. Sound Vib. (2014). doi:10.1016/j.jsv.2013.12.006

    Google Scholar 

  19. Reggio, A., De Angelis, M.: Optimal design of an equipment isolation system with nonlinear hysteretic behaviour. Earthq. Eng. Struct. Dyn. (2013). doi:10.1002/eqe.2304

    Google Scholar 

  20. Basili, M., De Angelis, M.: Equipment Isolation Systems by Means of Semi Active Control Devices. Proc. 23\(^{rd}\) IEEE International WETICE Conf., pp. 237-242, Parma, Italy, (2014a). doi:10.1109/WETICE.2014.38

  21. Basili, M., De Angelis, M.: Investigation on the optimal properties of semi active control devices with continuous control for equipment isolation. Scalable Comput. (2014b). doi:10.12694/scpe.v15i4.1054

    Google Scholar 

  22. Komodromos, P., Polycarpou, P.C., Papaloizou, L., Phocas, M.C.: Response of seismically isolated buildings considering poundings. Earthq. Eng. Struct. Dyn. (2007). doi:10.1002/eqe.692

    Google Scholar 

  23. Komodromos, P.: Simulation of the earthquake-induced pounding of seismically isolated buildings. Comput. Struct. (2008). doi:10.1016/j.compstruc.2007.08.001

    Google Scholar 

  24. Anagnostopoulos, S.A.: Pounding of buildings in series during earthquakes. Earthq. Eng. Struct. Dyn. (1988). doi:10.1002/eqe.4290160311

    Google Scholar 

  25. Maison, B.F., Kasai, K.: Analysis for type of structural pounding. J. Struct. Eng. (1990). doi:10.1061/(ASCE)0733-9445(1990)116:4(957)

    Google Scholar 

  26. Andreaus, U., Baragatti, P., Placidi, L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Nonlinear Mech. (2016). doi:10.1016/j.ijnonlinmec.2015.10.007

    Google Scholar 

  27. Filiatrault, A., Wagner, P., Cherry, S.: Analytical prediction of experimental building pounding. Earthq. Eng. Struct. Dyn. (1995). doi:10.1002/eqe.4290240807

    Google Scholar 

  28. Chau, K.T., Wie, X.X., Guo, X., Shen, C.Y.: Experimental and theoretical simulations of seismic poundings between two adjacent structures. Earthq. Eng. Struct. Dyn. (2003). doi:10.1002/eqe.231

    Google Scholar 

  29. Papadrakakis, M., Mouzakis, H.: Earthquake simulator testing of pounding between adjacent buildings. Earthq. Eng. Struct. Dyn. (1995). doi:10.1002/eqe.4290240604

    Google Scholar 

  30. Vlassis, A., Maragakis, E., Saiidi, M.: Update on analytical and experimental research on bridge restrainers. Transp. Res. Rec. (2001). doi:10.3141/1770-17

    Google Scholar 

  31. Li, C., Zhu, R., Liang, M., Yang, S.: Integration of shock absorption and energy harvesting using a hydraulic rectifier. J. Sound Vib. (2014). doi:10.1016/jjsv.2014.04020

    Google Scholar 

  32. Ebrahimi, B., Khamesee, M.B., Golnaraghi, M.F.: Design and modeling of a magnetic shock absorber based on eddy current damping effect. J. Sound Vib. (2008). doi:10.1016/j.jsv.2008.02.022

    Google Scholar 

  33. Serweta, W., Okolewski, A., Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Mirror hysteresis and Lyapunov exponents of impact oscillator with symmetrical soft stops. Int. J. Mech. Sci. (2015). doi:10.1016/j.ijmecsci.2015.07.016

    Google Scholar 

  34. Hao, Z., Cao, Q., Wiercigroch, M.: Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2685-5

    MathSciNet  Google Scholar 

  35. Czolczynski, K., Blazejczyk-Okolewska, B., Okolewski, A.: Analytical and numerical investigations of stable periodic solutions of the impacting oscillator with a moving base. Int. J. Mech. Sci. (2016). doi:10.1016/j.ijmecsci.2016.07.004

    Google Scholar 

  36. Andreaus, U., Nisticò, N.: An analytical-numerical model for contact-impact problems: theory and implementation in a two-dimensional distinct element algorithm. Comput. Mod. Sim. Eng. 3(2), 98–110 (1998)

    Google Scholar 

  37. Andreaus, U., Casini, P.: Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dyn. (2000). doi:10.1023/A:1008354220584

    MATH  MathSciNet  Google Scholar 

  38. De Simone, A., Luongo, A.: Nonlinear viscoelastic analysis of a cylindrical balloon squeezed between two rigid moving plates. Int. J. Solids Struct. (2013). doi:10.1016/j.ijsolstr.2013.03.028

    Google Scholar 

  39. Baraldi, D., Reccia, E., Cazzani, A., Cecchi, A.: Comparative analysis of numerical discrete and finite element models: the case of in-plane loaded periodic brickwork. Comps. Mech. Comput. Appl. (2013). doi:10.1615/CompMechComputApplIntJ.v4.i4.40

    Google Scholar 

  40. Chiaia, B., Kumpyak, O., Placidi, L., Maksimov, V.: Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct. (2015). doi:10.1016/j.engstruct.2015.03.054

    Google Scholar 

  41. Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Sim. (2010). doi:10.1016/j.cnsns.2009.10.015

    MATH  MathSciNet  Google Scholar 

  42. Andreaus, U., Placidi, L., Rega, G.: Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. P. I. Mech. Eng. C-J. Mec. (2011). doi:10.1177/0954406211414484

  43. Andreaus, U., Placidi, L., Rega, G.: Microcantilever dynamics in tapping mode atomic force microscopy via higher eigenmodes analysis. J. Appl. Phys. (2013a). doi:10.1063/1.4808446

    Google Scholar 

  44. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. (2013b). doi:10.1007/s00161-012-0266-5

    MATH  MathSciNet  Google Scholar 

  45. Pepe, G., Carcaterra, A.: VFC - Variational Feedback Controller and its application to semi-active suspensions. Mech. Syst. Signal Pr. (2016). doi:10.1016/j.ymssp.2016.01.002

  46. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by moving base or/and driving force. J. Sound Vib. (2001a). doi:10.1006/jsvi.2000.3555

    MATH  Google Scholar 

  47. Andreaus, U., Casini, P.: Forced motion of friction oscillators limited by a rigid or deformable obstacle. Mech. Struct. Mach. (2001b). doi:10.1081/SME-100104479

    MATH  Google Scholar 

  48. Andreaus, U., Casini, P.: Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int. J. Nonlinear Mech. (2002). doi:10.1081/SME-100104479

    MATH  Google Scholar 

  49. D’Annibale, F., Luongo, A.: A damage constitutive model for sliding friction coupled to wear. Contin. Mech. Thermodyn. (2013). doi:10.1007/s00161-012-0283-4

  50. Andreaus, U., De Angelis, M.: Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints. Nonlinear Dyn. (2016). doi:10.1007/s11071-015-2581-4

    Google Scholar 

  51. Núñez, K., Rivas, L., Scattolini, M., Rosales, C., Perera, R., Matos, M.: Mechanical properties of TPVs of EPDM/polypropylene/paraffin oil. Rev. Téc. Ing. Univ. Zulia 30, 445–453 (2007)

    Google Scholar 

  52. Wagg, D.J., Karpodinis, G., Bishop, S.R.: An experimental study of the impulse response of a vibro-impacting cantilever beam. J. Sound Vib. 228, 243–264 (1999)

    Article  Google Scholar 

  53. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibro-impact. J. Appl. Mech. 42, 440–445 (1975)

    Article  Google Scholar 

  54. Moon, F.C., Shaw, S.W.: Chaotic vibrations of a beam with non-linear boundary conditions. Int. J. Nonlinear Mech. (1983). doi:10.1016/0020-7462(83)90033-1

    Google Scholar 

  55. Thompson, M.G., Bishop, S.R., Foale, S.: An experimental study of low velocity impacts. Mach. Vib. 3, 10–17 (1994)

    Google Scholar 

  56. Cusumano, J.P., Sharkady, M.T., Kimble, B.W.: Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator. Philos. Trans. R. Soc. Lond. A 347, 421–438 (1994)

    Article  Google Scholar 

  57. Bishop, S.R., Thompson, M.G., Foale, S.: Prediction of period-1 impacts in a driven beam. Proc. R. Soc. Lond. A 452, 2579–2592 (1996)

    Article  Google Scholar 

  58. Balachandran, B.: Dynamics of an elastic structure excited by harmonic and aharmonic impactor motions. J. Vib. Control 9, 265–279 (2003)

    MATH  Google Scholar 

  59. Goldsmith, W.: Impact: the Theory and Physical Behaviour of Colliding Solids. Edward Arnold Ltd, London (1960)

    MATH  Google Scholar 

  60. Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. Int. J. Impact Eng. (2005). doi:10.1016/j.ijimpeng.2005.01.001

    Google Scholar 

  61. Kelly, J.M.: Earthquake-Resistant Design with Rubber, 2nd edn. Springer, London (1996)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Italian Ministry of University and Research, under the Scientific Research Program of Relevant National Interest: Year 2010–2011, Protocol 2010MBJK5B-005, Title “Dynamics, Stability and Control of Flexible Structures.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Andreaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreaus, U., Baragatti, P., De Angelis, M. et al. Shaking table tests and numerical investigation of two-sided damping constraint for end-stop impact protection. Nonlinear Dyn 90, 2387–2421 (2017). https://doi.org/10.1007/s11071-017-3810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3810-9

Keywords

Navigation